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Abstract
Globe crop analysis from plentiful satellite im-
ages yields state-of-the-art results about estimat-
ing climate change impacts on agriculture with
modern machine learning technology. Gener-
ating accurate and timely crop mapping across
years remains a scientific challenge since exist-
ing non-temporal classifiers are hardly capable of
capturing complicated temporal links from multi-
temporal remote sensing data and adapting to in-
terannual variability. We developed an LSTM-
based model trained by previous years to distin-
guish corn and soybean for the current year. The
results showed that LSTM outperformed random
forest baseline in both in-season and end-of-the-
season crop type classification. The improved
performance is a result of the cumulative effect of
remote sensing information that has been learned
by LSTM model structure. The work provides a
valuable opportunity for estimating the impact of
climate change on crop yield and early warning
of extreme weather events in the future.

1. Introduction
Climate change is affecting agricultural land use in a com-
plicated manner. According to the fifth assessment report
of the Intergovernmental Panel on Climate Change (IPCC),
a temperature rise of 3 to 4 ◦C is projected in cropland
dominated areas by the year 2100 (Stocker et al., 2013).
Crop production and food supply are extremely vulnerable
to the changes in climate factors caused by global warming
(Nelson et al., 2009; Vermeulen et al., 2012). The shift of
U.S. Corn Belt (Napton & Graesser, 2011) and extension
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of North American wheat areas (Ortiz et al., 2008) have
been observed in past decades, indicating the significant
long-term impact of climate change on agricultural land use.
To understand the cropping pattern changes and estimate
the potential socio-economic impact, monitoring changes
of cropland use at a high spatiotemporal scale are greatly
needed.

Extracting general features from historical data and gener-
ating near-real-time crop maps are of great significance for
estimating the impact of climate change on crop yield and
early warning of extreme weather events. Remote sensing
with machine learning technology provides a viable option
for crop classification. Existing methods have achieved
considerable success in many applications depending on
pre-defined feature crafting and general classifiers such as
random forest (RF) and support vector machine (SVM)
(Löw et al., 2013; Zhang et al., 2014; Waldner et al., 2015;
Shi & Yang, 2016). Considering real-world applications, im-
plementing accurate and timely crop mapping using satellite
imagery across years remains a scientific challenge (Zhong
et al., 2014; Wang et al., 2019). Many existing modeling
and non-temporal algorithms are hardly capable of captur-
ing complicated temporal links from multi-temporal remote
sensing data and adapting to interannual variability which
is even greater due to accelerated climate change. An effi-
cient classifier is required to model the cumulative effect in
the dynamic response of crops to the environment, which
represents unique growth features. Thus, a data-driven deep
learning based approach is suggested to learn general pat-
terns from past years and distinguish the crop classes for the
current year in the early season.

We present a long short-term memory (LSTM) based ap-
proach to identify crop types at a scalable spatiotemporal
scale in this study. Introduced by Hochreiter and Schmid-
huber (Hochreiter & Schmidhuber, 1997), LSTM units are
a variant of recurrent neural networks (RNN), which al-
lows exhibiting long-term temporal dynamic dependencies
from sequence data. Considering that individual phenolog-
ical profiles of crop types are relatively consistent across
years (Zhong et al., 2014), extracting long-term cumulative
information from multi-temporal data may model crop vege-
tation cycles. Hence the LSTM-based approach is expected
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to recognize general patterns from historical remote sensing
data and address multi-temporal in-season crop mapping
problem.

2. Data and Methods
2.1. Remote Sensing Imagery and Ground Truth

Landsat Analysis Ready Data (ARD) surface reflectance
composites from April 1st to September 30th were exploited
as inputs in each year, publicly available from USGS’s Earth-
Explorer web portal (https://earthexplorer.usgs.gov). ARD
provides non-spatially overlapping six-band imageries at
30m resolution. In order to remove the gaps resulted from
missing acquisitions and invalid data, we employed linear
interpolation based on the nearest valid values before and
after the target time step for each pixel to obtain time series
with 7-day intervals. For ground truth, we used USDA’s 30m
CDL maps downloaded from the CropScape website portal
(https://nassgeodata.gmu.edu/CropScape/) as the reference
map for both training and test datasets.

In this paper, we chose a study site of 51km × 51km in
north-central Iowa for the experiments. The area of 3375
× 3375 pixels is fully covered in the footprint of h18v07
in ARD grid system. The site locates in the U.S. Corn
Belt region, which is a major area for corn and soybean
production. As a result, we took corn, soybean and other as
the classes of interest and assigned a label to each pixel of
the thematic maps annually from 2015 to 2018.

2.2. LSTM-based Classification Model

As shown in Figure 1, the proposed LSTM-based model
contains five components: the input layer, LSTM layer,
attention layer, and output layer. Each ARD observation
is encoded as a vector xt = {sb1, sb2, sb3, sb4, sb5, sb5}
consisting of six spectral bands at time step t during the
crop growth period. The input is expressed as a time series
X = {x1, x2, . . . , xt, . . . , xT }, where T is the length of the
observation sequence fed into the network. We employed
LSTM layers to capture high-level temporal feature matrix
h. The final representation of the whole time sequence h∗

is calculated by multiplying weight matrix α derived from
an attention layer by h. In the output layer, We applied
a softmax layer to produce the predictive distribution p.
The cross-entropy function is adopted as the loss function,
and the Adam optimizer (Kingma & Ba, 2014) is used for
training the network.

2.3. Experiment Design

We designed two experiments to explore the practical capa-
bility of LSTM in remote sensing based crop mapping tasks.
For comparison, RF baseline is applied in all scenarios.

Figure 1. LSTM-based classification model for multi-temporal and
multi-spectral crop mapping.

The first experiment aims to study the temporal transfer-
ability of classification models across years. Classifiers are
usually required to learn general patterns from past years
and distinguish the crop classes for the current year. Over-
fitting can easily occur due to lacking labels in the current
year and interannual difference such as climate variability.
In order to evaluate the performance of models under such
restrictions, we used the data from the last year (2018) as
the test set and sampled the data from previous years (2015-
2017) as the training set. This group of experiments was
designed to mimic real-life situations and examine the in-
fluence of interannual variability in remote sensing data on
classifiers.

The second experiment is to address the in-season classifi-
cation problem. To provide accurate and early-season crop
type maps, a classifier is expected to perform well on the
remote sensing time series with limited length. We gradu-
ally increased the length of the input observation sequence
until all time steps were included. It is a simulation of the
practical situation that more and more satellite images are
available as the growing season progresses. This group of
experiments was designed to quantify how models depend
on the sequence integrity and when there are sufficient multi-
temporal scenes to make satisfactory crop discrimination.
In this scenario, we trained models on the data from 2015
to 2017 and validated them by comparing results with the
reference classes in 2018.
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3. Results and Discussion
3.1. Temporal Transferability Across Years

The test accuracy metrics of LSTM-based models and RF-
based models are reported in Table 1, using three groups
of training years. Under the same conditions, LSTM-based
models always outperformed RF-based models for the crop
type prediction in 2018. The best overall accuracy achieved
by LSTM was 92.1% which is superior to RF with 88.3%.
The corresponding kappa score of LSTM (87.0%) was much
higher than RF (81.1%), which indicates LSTM has better
applicability to imbalanced classification.

Both classifiers benefited from the increase in training years.
The gain of LSTM in accuracy was weak compared with
RF, which reflects the more powerful capability to capture
general crop type features from data of limited years. Con-
sidering that distinct phenological profiles of crop types
are relatively consistent across years (Zhong et al., 2014),
the characteristic of LSTM to extract long-term cumulative
information from multi-temporal data may model crop veg-
etation cycles and explain why it was less affected by the
interannual variability.

3.2. In-season Classification

Figure 2 shows the trends of model performance with the
progression of time. With remarkable progress after the 13th
time step, LSTM achieved a relatively high accuracy after
the 18th time step which corresponded to the end of July
and reached a plateau then. For comparison, RF had been
improving until the 21st time step and performed poorly
until the final stage.

The abnormal decrease before the sixth time steps is antici-
pating. The planting stage began in late April or early May
in the study area for the year 2018 and thus remote sensing
data could not contribute much useful information to crop
mapping tasks. Cloud contamination in ARD may also lead
to slight performance decreases.

4. Conclusion
In this study, we proposed an LSTM-based approach for
practical in-season multi-temporal crop mapping using mod-
erate resolution satellite remote sensing data. Compared
with RF baseline, LSTM achieved higher performance in
both scenarios of temporal transferability across years and
in-season prediction. The study demonstrates that LSTM
is applicable for accurate and timely crop mapping. It can
make a significant contribution to estimating the potential
impact of climate changes on agriculture and early warning
of extreme weather events. Further work can concentrate on
the spatial transferability of the LSTM-based approach in
order to produce adaptable classifiers for those areas lacking

Figure 2. Overall classification accuracy as a function over time.
The first time step corresponds to April 1st and the last September
30th. LSTM almost always outperformed RF during the whole
growing season and reached high performance at a relatively early
stage for monitoring applications.

labeled training data.
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