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1. Background

Large-scale deployment of carbon capture and sequestra-
tion (CCS) is essential to many climate mitigation model-
ing scenarios for achieving the 2 degrees C target (IPCC,
2014). Carbon dioxide (CO3) captured from concentrated
sources, the atmosphere, or through bio-energy production,
is compressed into a liquid and injected into deep geological
formations for long term sequestration.

Numerical modeling of the migration of the CO plume is a
prerequisite to effective CCS projects. It is used throughout
the site screening, permitting, designing, operating, moni-
toring and closure processes (NETL, 2017). In a geological
formation, the migration of the COj is controlled by a com-
plex interplay of viscous, capillary, and gravity forces. Once
COs is injected into the formation, it migrates away from
the injection well while rising upward since COx is lighter
than the formation fluid. The injected COs is subject to the
risk of leakage if it encounters permeable faults or leaky
well bores. Figure 1 shows a schematic of a COy plume in
a geological formation.

Current modeling approaches solve the relevant mass and
energy balances using a set of spatially and temporally dis-
cretized nonlinear partial differential equations. However,
this process is often computationally intractable due to the
heterogeneity of geological formations, large spatial do-
mains, and the long time frame of CO; sequestration (NAS,
2018).

The problem is confounded by the inherent uncertainty as-
sociated with the subsurface geology. Uncertainty analysis
with stochastic simulations can be used to obtain probabilis-
tic estimates of plume migration. However, stochastic simu-
lations are limited by computational resources. Meanwhile,
the model calibration process requires history-matching sim-
ulation models with monitoring data in an iterative fashion,
which also requires huge computational resources (Kempka
etal., 2010; Strandli et al., 2014; Zhang et al., 2014; Cowton
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Figure 1. Schematic of CO2 plume in geological formation (not to
scale). Figure modified from Krevor et al. (2015).

et al., 2016). In practice, approximation approaches such as
upscaling or reduced physics modeling have been heuristi-
cally developed to aid decision making (Nordbotten et al.,
2012).

In recent years, we have seen some encouraging studies
that apply neural networks to subsurface flow problems
(Zhu & Zabaras, 2018; Mo et al., 2019). In both studies,
the mapping from input properties (e.g. permeability) to
output states (e.g. flow velocity, saturation, pressure) are
treated as an image-to-image regression. Zhu and Zabaras
(2018) proposed an encoder-decoder network to solve a
4,225-dimensional single-phase flow problem where the
network predicts the flow velocity and pressure fields given
a permeability map. Applying a similar encoder-decoder
network, Mo et al. (2019) studied a 2,500-dimensional CO5-
water multiphse flow problem in the xy plane (no gravity).
The injection time is added as an additional scalar input to
the network and broadcast to a separate channel in the latent
space to make predictions over time.

Extending on previous works, here we take an essential step
by embedding spatial information in controlling parameters
such as injection location and duration. We demonstrate that
the network achieves high accuracy in 16,384-dimensional
multiphase flow problems in the rz plane, where viscous,
capillary, and gravity forces all play an important role. This
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allows deep neural network approaches to be applied in
more realistic CO5 sequestration settings. This network also
deals with discontinuous geological heterogeneities, which
is crucial for many sequestration formations.

2. Data Description

Our dataset includes pairs of input permeability fields and
output super-critical CO5 saturation fields in a uniform grid
of 128 x 128 with a grid size of 1 m. The proposed geologi-
cal formation is located 1500 meters below ground surface
in an isothermal reservoir. The permeability fields are ran-
domly generated with laterally correlated heterogeneity to
mimic the sedimentary formations that are typically used
for sequestration. Correlation lengths for the permeability
heterogeneity distributions range from a few meters to sev-
eral hundred meters to represent the complex geology found
in subsurface formations.

To incorporate the injection duration and location, we create
a separate channel, where the injection well is treated as a
CO; source term on the designated cell. Supercritical COq
is injected to the center of the cylindrical volume with a rate
of 2.3 tons of CO4 per day per meter of well perforation. An
example of a training sample is included in Figure 2. This
approach is scalable to more controlling parameters with
spatial information (e.g. porosity, well bore pressure, initial
saturation, etc.) which can be easily stacked as separate
channels.
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Figure 2. An example from the training set. The permeability,
injection, and saturation fields all lie in a rz plane. The modeled
volume is radially symmetrical and the injection well is located in
the center of the cylindrical volume.

The CO5 saturation field is calculated with the state-of-
the-art full-physics numerical simulator ECLIPSE (Schlum-
berger, 2014). Each simulation takes around 15 minutes on
an Intel Core 17-4790 CPU.

3. Neural Network Setup

The network is designed based on the U-Net architecture
(Ronneberger et al., 2015) and the ResNet architecture (He
et al., 2015). The task of the network is to predict the

z to y mapping from an input permeability field and an
input injection field to the output COs saturation field. The
structure of the network is illustrated as Figure 3.

Figure 3. Schematic of the neural network. Blue represents en
encoding unit, yellow represents a connecting unit, pink represents
a decoding unit, and the black arrow represents a concatenating
path.

The encoding path contains four encoding units (blue block)
where each encoding unit contains a convolution layer, a
batch normalization layer, and a Relu activation layer. By
using 3x3 filters, the encoder extracts 128 channels of 16x16
feature map where each channel contains some latent repre-
sentations of the input physical space.

A connecting unit (yellow block) contains five ResNet
blocks to perform mapping from the input permeability
latent representations to the output saturation latent repre-
sentations.

The decoding units (pink block) each contain an up-pooling
layer, a reflection padding layer, a convolution layer, a batch
normalization layer, and an activation layer. The reflection
padding layer is added to prevent artifacts around the edges
of the output. Also, the concatenating channels merge the
intermediate feature maps extracted from the encoding path
with the corresponding decoding path and feed into the next
decoding unit. The last decoding unit outputs the prediction
of the CO4 saturation map.

4. Result

4.1. Baseline

Baseline results of the CO5 saturation map predicted by the
proposed network is shown in Figure 4. The baseline model
is trained with 40,000 training samples for 150 epochs. Each
epoch takes around 2 minutes on an NVIDIA Tesla V100
GPU. At test time, each plume prediction takes around
0.0003 second, which is 6 orders of magnitude faster than
ECLIPSE.

The results in Figure 4 demonstrate the network’s ability to
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make accurate predictions in highly stochastic formations
(first row), channelized formations (second row), and lay-
ered formations (third row). The trained network estimates
the saturation of CO» according to the injection duration and
location while capturing the interplay of viscous, capillary,
and gravity forces. The mean absolute error on the valida-
tion set is around 0.0015, which is considered negligible in
the context of plume migration.

y [CO; saturation) y (CO; saturation) Mean Absolute Error: 0.0027

Mean Absolute Error: 0.0022

y (CO; saturation) y (CO; saturation)

- 04
-

-

ECLIPSE Neural Network Error

Figure 4. Validation set results on the baseline model which is
trained by 40,000 samples for 150 epochs.

4.2. Sensitivity to the number of training samples

Figure 5 shows the validation set errors trained by 40,000 to
40 samples. Surprisingly, the network that is trained by only
40 training samples still achieves low mean absolute error
(0.015) on the validation set. Even with this small dataset,
the neural network manages to learn an approximate shape
of the plume.

4.3. Generalization

A key challenge in predicting plume migration with a neural
network is whether the network can generalize outside of it’s
training data. We address this concern with the following
sensitivity studies. The interpolation ability is demonstrated
by using a training set that includes samples with 20, 60,
100, 140, and 180 days of injection, and a validation set
that includes samples with 40, 80, 120, 160 and 200 days
of injection. Similarly, the extrapolation ability is demon-
strated by a training set with 20 to 120 days of injection,
and a validation set with 120 to 200 days of injection.

The size of the training set is 20,000 for both cases. The
mean absolute error on the validation set is about 0.0075
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Figure 5. Mean absolute error on the validation set verse the num-
ber of training samples. The validation set contains 80 samples.

for the interpolate case and about 0.0170 for the extrapolate
case. Figure 6 shows the results from the interpolation and
the extrapolation cases.
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Figure 6. The first row demonstrates that the network can interpo-
late the plume with 160 days of injection form the training samples
with 140 and 180 days of injection. The second row demonstrates
that the network can extrapolate to 200 days of injection from the
training samples with 20 to 120 days of injection.

5. Conclusion

In this paper, we provide an robust approach to conduct
fast and accurate prediction of CO4 plume by using deep
neural networks. Our network can accurately predicts the
CO plume migration in high dimensional complex systems
with highly heterogeneous subsurface geology. To show the
potential of this approach, we also demonstrate the ability
of this network to generalize outside of the training data.
This approach can be easily adopted to history-matching
and uncertainty analysis problems to support the scale-up
of CCS deployment.
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