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Abstract

The cost of wind energy can be reduced by us-
ing SCADA data to detect faults in wind turbine
components. Normal behavior models are one of
the main fault detection approaches, but there is a
lack of consensus in how different input features
affect the results. In this work, a new taxonomy
based on the causal relations between the input
features and the target is presented. Based on
this taxonomy, the impact of different input fea-
ture configurations on the modelling and fault
detection performance is evaluated. To this end, a
framework that formulates the detection of faults
as a classification problem is also presented.

1. Introduction

In 2018, global energy-related CO2 emissions reached a his-
toric high of 33.1 gigatonnes. These emissions are caused
by the burning of fossil fuels, mainly natural gas, coal and
oil, which accounted for 64% of global electricity produc-
tion in this same year (IEA, 2018). Greenhouse gases like
COs, are responsible for climate change which threatens to
change the way we have come to know Earth and human
life. For the previous reasons, there has been a global effort
to shift from a fossil fuel based energy system towards a
renewable energy one. In fact, it is expected that by 2050
wind energy will represent 14% of the world’s total primary
energy supply (DNV-GL, 2018).

The operation and maintenance costs of Wind Turbines
(WTs) can account for up to 30% of the cost of wind energy
(EWEA, 2009). This happens because while generators
in fossil fuel power plants operate in a constant, narrow
range of speeds, WTs are designed to operate under a wide
range of wind speeds and weather conditions. This means
that stresses on components are significantly higher, which
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increases the number of failures and consequently the main-
tenance costs.

There have been recent efforts to monitor and detect in-
cipient faults in WTs by harvesting the high amounts of
data already generated by their Supervisory Control and
Data Acquisition (SCADA) systems, which, in turn, enables
the wind farm owners to employ a predictive maintenance
strategy. In fact, it is expected that by 2025 new predictive
maintenance strategies can reduce the cost of wind energy
by as much as 25% (IRENA, 2016). One of the main meth-
ods for monitoring the condition of WTs is building Normal
Behaviour Models (NBMs) of the component temperatures.
The fundamental assumption behind the use of NBMs is
that a fault condition is normally characterized by a loss
of efficiency, which results in increased temperatures. By
using SCADA data to build a model of the temperatures of
the WT components, one can calculate the residuals, which
are the difference between the real values measured by the
sensors and the predicted values by the model. These residu-
als can be used to detect abnormally high temperatures that
may be indicative of an incipient fault.

Multiple works (Zaher et al., 2009; Mesquita et al., 2012;
Brandao et al., 2015) have reported good results using
NBMs to predict WT failures, being able to predict failures
in WT components months in advance. In these works the
authors used as features active power, nacelle temperature
and lagged values of the target temperature, thus including
autoregressive properties into to the model, to predict the
temperatures of various components. In (Schlechtingen &
Santos, 2011) and (Bach-Andersen et al., 2016) the authors
obtained an important result: although the use of autore-
gressive features resulted in better temperature modelling
performance it also resulted in worse fault detection perfor-
mance. Another important result was obtained in (Banga-
lore et al., 2017) and (Tautz-Weinert, 2018), which indicated
that using features that are highly correlated with the target
also increased the modelling performance but decreased the
fault detection performance of the model. Nonetheless, this
type of features are still used in many works today, such as
(Bach-Andersen et al., 2016; Bach-Andersen, 2017; Colone
et al., 2018; Zhao et al., 2017; Tautz-Weinert & Watson,
2016; Zhao et al., 2018; Mazidi et al., 2017). There are
also conflicting opinions regarding the use of autoregressive
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features, with some works using them and others not. The
main reason behind this is the lack of consistent case studies
that evaluate the impact of different features on both the
temperature modelling and fault detection performances. It
should also be noted that in NBMs it’s not trivial that the
more features the model has the better its fault detection
performance will be. This happens because the model is
being trained to minimize the temperature modelling error
and not the fault detection one. Having this in mind, this
work will present a new feature taxonomy to distinguish
different input feature types. Then, the impact of these in-
put feature types on the temperature modelling and fault
detection performances will be evaluated.

Finally, evaluating the fault detection performance of differ-
ent models is not as trivial as evaluating their temperature
modelling performance. In fact, there is no standard in the
literature regarding how to evaluate fault detection perfor-
mance. This happens because of the inherent nature of the
fault detection problem, in which there is rarely groundtruth.
Indeed, there is data of when the failure happened, but there
is no information regarding when the fault state started,
making it not trivial to formulate as a classification problem.
Hence why the majority of the literature evaluates the fault
detection results by visual inspection, observing the increase
in the residuals before the failure. This is problematic, be-
cause comparisons between different models will be highly
subjective. Having this in mind, this work will also present
a formulation of the detection of faults as a classification
problem.

2. Methods
2.1. Data and Training

In this work a dataset composed of 15 turbines during a 6
year period will be used. This data corresponds to SCADA
signals with 10 minute resolution. During the year of 2012
there was a total of 5 failures related with the Gearbox IMS
Bearing. For these reasons, this will be the component
for which an NBM will be trained, with the objective of
predicting the corresponding failures.

The models will be trained with data from the beginning
of 2007 to the end of 2011 and tested on data from 2012.
Periods with faults will be removed from the training data
so the model does not learn abnormal behaviour. The mod-
els will be implemented with Gradient Boosting Decision
Trees (GBDT), which work by iteratively combining weak
decision trees into a strong ensemble learner. In terms of
implementation, LightGBM (Ke et al., 2017) will be used
due to its high computational performance. In terms of
optimization, the year of 2011 will be used as a validation
set when choosing the number of trees for each model by
early stopping. Note that no exhaustive hyperparameter op-

timization was performed, so all models will use the same
hyperparameters besides the number of trees.

2.2. Feature Taxonomy

In the present work we hypothesize that what causes a de-
crease in fault detection performance is not using input
features highly correlated with the target, but using those
whose sensors are physically close to the target sensor. If
there is an increase in the temperature of a faulty component,
the physically close components will also get hotter due to
heat transfer. Thus, using physically close components as
features to the model may leak information regarding the
fault state of the target, making it unable to detect abnormal
behaviour. These ideas can be clarified by using appropriate
nomenclature. Based on Econometric Causality (Heckman,
2008), we will distinguish features based on their causal
relations with the target. If the target is causally dependent
of the features, they are causal features. On the other hand,
if the target depends on the features but the features also
depend on the target they are simultaneity features. Such
causal relations are assumed based on the domain knowl-
edge of the physical system.

Based on the taxonomy previously presented, different mod-
els will be defined based on their input feature configuration.
The simplest model that will be tested is the Causal Normal
Behaviour Model (CNBM), which only uses causal features.
These are determined based on domain knowledge and will
be: rotor speed, active power, pitch angle, wind speed and
ambient temperature. All these features characterize the op-
eration regimes of the WT, these are causal features because
the gearbox IMS bearing temperature depends on their val-
ues, but their values are not dependent on it. For example,
variations in the ambient temperature influence the gearbox
IMS bearing temperature, but the influences of the latter on
the ambient temperature can be disregarded.

On the other hand, simultaneity features will be chosen
based on Pearson Correlation, which is a standard first ap-
proach for regression problems. The highest correlated
feature with the gearbox IMS bearing temperature is the
gearbox HSS bearing temperature, which is a simultaneity
feature because there is heat transfer between the two sen-
sors, thus meaning that their values are mutually causally
dependent. Having this in mind, the Simultaneous Normal
Behaviour Model (SNBM) will use all the features from
the CNBM plus gearbox HSS bearing temperature. Two
more models will be tested, which correspond to the au-
toregressive versions of the previously described models:
Autoregressive Causal Normal Behaviour Model (ACNBM)
and Autoregressive Simultaneous Normal Behaviour Model
(ASNBM).
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Figure 1. Schematic example of fault detection formulated as a
classification problem.

2.3. Fault Evaluation Framework

To develop an evaluation framework for fault detection, one
must first formulate it as a binary classification problem
where there are two labels: fault and no-fault. Since there is
no information regarding the fault state of the component,
only the date of failure, it was defined with the wind farm
owners that for the failures studied in this work it can be
assumed that a fault state would be present at most 60 days
before the failure. It was also defined that for the alarms to
be useful they should be triggered at least 15 days before
the failure. This means that to be considered a True Positive
(TP) the alarm must be triggered between 60 and 15 days
before the failure. Figure 1 presents a schematic example of
the previously described problem formulation. Taking this
example, it is important to note that the number of alarms
triggered in the prediction window is not relevant, they are
all aggregated as 1 TP. The main reason for this, is that if the
aggregation is not done, then 4 alarms for the same failure
would count as much as 4 detected failures with 1 alarm
each. This clearly is not what is intended of the framework,
since 1 alarm should be enough to motivate an inspection,
and detecting 4 failures with 1 alarm outweighs detecting
1 failure with 4 alarms. Finally, it is also important to note
that alarms triggered less than 15 days before the failure are
not considered False Positives (FPs), since there is indeed a
fault state, it simply is not relevant, so they are considered
True Negatives (TNs).

3. Results

In terms of temperature modelling, the models were eval-
uated on periods of turbines that are known to be healthy.
The results, presented in Table 1, indicate that the use of
simultaneity features indeed improves the modelling perfor-
mance, since SNBM obtains better results than CNBM. The
use of autoregressive features also improves the modelling
performance, since ACNBM and ASNBM obtain better re-
sults than their non-autoregressive counterparts. This results
make sense, since there are certain regimes of the turbine
that are difficult to model without simultaneity nor autore-
gressive features, such as the turning off of the turbine as
noted in (Bach-Andersen, 2017).

Table 1. Regression error metrics for the training and test sets of
each model.

MODEL TRAINING TEST
MAE RMSE MAE RMSE
CNBM 1.48 2.14 1.80 2.62
SNBM 0.87 1.26 1.01 1.41
ACNBM 1.03 1.57 1.14 1.67
ASNBM  0.83 1.22 0.96 1.38
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Figure 2. Precision and Recall curves for the different models.

In terms of fault detection, a baseline was defined that con-
sists of setting different thresholds on the distribution of the
target temperature and obtaining the corresponding preci-
sion and recall. For the models, also different thresholds
were applied in the residuals to obtain the different values
of precision and recall. The results are presented in Figure
2. As can be seen, the CNBM which obtained the worst
modelling performance obtains the best fault detection per-
formance. Also, note that the models with the simultaneity
feature are significantly worse than the baseline.

4. Conclusions

An evaluation framework to formulate fault detection as a
classification problem was presented. This hopes to con-
tribute to the development of a standard approach for fault
detection performance evaluation. Furthermore, a taxonomy
regarding the causal relations of the different input feature
types was presented, which hopes to make the discussion
on how different features affect the performance of models
clearer. Finally, it was demonstrated that although autore-
gressive and simultaneity features increase the modelling
performance they decrease the fault detection capabilities
of the model. This is an important contribution since the
majority of works today still use these types of features.
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