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1. Introduction

Hurricanes and, more generally, tropical cyclones (TCs)
are rare, complex natural phenomena of both scientific and
public interest. The importance of understanding TCs in
a changing climate (Knutson et al., 2010) has increased as
recent TCs have had devastating impacts on human lives and
communities (ABC; American Red Cross). Moreover, good
prediction and understanding about the complex nature of
TCs can mitigate some of these human and property losses.
Though TCs have been studied from many different angles,
more work is needed from a statistical approach of provid-
ing prediction regions (Camargo & Wing, 2016). The cur-
rent state-of-the-art in TC prediction bands comes from the
National Hurricane Center at National Oceanographic and
Atmospheric Administration (NOOA), whose proprietary
model provides “cones of uncertainty” for TCs through an
analysis of historical forecast errors (NOAA/NHC, 2018).

The contribution of this paper is twofold. We introduce
a new pipeline that encourages transparent and adaptable
prediction band development by streamlining cyclone track
simulation and prediction band generation. We also provide
updates to existing models and novel statistical methodolo-
gies in both areas of the pipeline respectively.

Our pipeline has many desirable properties. It provides an
easy-to-use framework to estimate prediction bands for new
TCs. The pipeline consists of two separable components
for TC track simulation and prediction band creation. Each
individual part is designed to be interchangeable; provided
the input and output are the same, each part can easily
be replaced by the user’s favorite method. We provide
purely data driven TC simulation approaches, but one can
easily pair these with other meteorological methods. This
is especially important in a climate change scenario, where
TC behavior might change drastically in a relatively short
period of time. Our current pipeline is implemented as an R
package and is available on Github!. Section 2 details its
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structure and components.

We extend the current statistical methods for TC simulations,
combining autoregressive path prediction models (Vickery
et al., 2000) and models of TC lifespan (Hall & Jewson,
2007). We propose novel statistically valid prediction bands
by leveraging geometric properties and statistical notions on
the depth and centrality of simulated curves. We benchmark
against the prediction bands creation technique found in
NOOA'’s state-of-the-art model (NOAA/NHC, 2018). We
construct prediction band methods that provide coverage in
either a pointwise or uniform manner, i.e., aiming to cover
either the future measurements of the TC path or the full TC
track respectively. Section 3 discusses these contributions
in detail, highlights experimental results on held-out data,
and provides empirical assessments of the prediction band
methods’ statistical properties.

2. Pipeline Structure and Flow

Figure 1 provides a schematic representation of our pro-
posed pipeline. The leftmost stage corresponds to the input,
which is a series of spatiotemporal measurements of a TC
track. In the current iteration we rely on the Atlantic Oceano-
graphic and Meteorological Laboratory of NOAA, which
publicly shares data on TC paths in the North Atlantic (Land-
sea & Franklin, 2013; NOAA/AOML, 2017); each path has
information on time, latitude and longitude, recorded ev-
ery six hours until the storm dies. For each new TC, the
pipeline uses only a few initial points to simulate a series of
tracks the TC could traverse. The curve simulation models
are tuned according to the computational complexity of the
models and the available processing power. When training
the track simulation model, the training TC paths should
be representative of the world region for which the pipeline
will make predictions. For instance, TC track data over the
Atlantic Ocean should not be used to train models over the
Pacific Ocean. Once these simulations are generated, the
next stage uses this ensemble to produce a prediction band
at a chosen statistical confidence level, usually between 90%
and 99%. The confidence refers to the statistical coverage
of the prediction band, i.e., the rate at which the prediction
band covers the true TC points or the full TC track. When
considering different prediction band techniques, one could
use a held-out set of TC tracks to assess the performance,
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Figure 1. Pipeline structure schema. From left to right, when the start (12-18 hours) of new tropical cyclone is observed, a pre-trained
model generates track simulations, and the prediction band methods use the simulated ensemble to construct the prediction band.

taking into consideration the band coverage and size.

It is important to remark that, as said in the introduction,
the pipeline is model-agnostic. The choices of statistical
framework or machine learning models do not affect the
structure or flow of the pipeline, provided the input and
output of each stage is not changed. Similarly, a more
granular or richer input will not modify the pipeline structure
but will only affect the models in the simulation and band
prediction stages.

3. Current Methodology

Our methodology for predicting TC paths involves two ma-
jor modeling components: the simulation of potential paths
and the construction of prediction bands from those paths.

To simulate TC paths, first we have developed models that
make sequential predictions for the location of a TC. Our
current approaches build upon foundational work by Vick-
ery et al., who predicted change in TC bearing and speed
from linear models with basin-specific coefficients (Vick-
ery et al., 2000). By sequentially predicting changes in TC
bearing and speed at each time step, these models propagate
complete TC paths from the initial points. Whereas Vick-
ery et al. include two lag terms in their bearing model and
one lag term in their speed model, we have developed two
sets of models. A non-autoregressive (non-AR) model that
predicts change in bearing and change in speed at time step
1 from latitude (at time step 7), longitude, bearing (calcu-
lated between time steps ¢ — 1 and ¢), and speed (between
time steps ¢ — 1 and ¢). An autoregressive (AR) model that
also includes a lag term for change in bearing or change
in speed, respectively. Conceptually, the AR models al-
low us to model climatological phenomena such as TCs
continuing to gain/lose speed or continuing to turn in the
same direction. Empirically, table 1 shows that the predic-

tion bands constructed from AR simulations capture greater
proportions of the test TC points and full paths. To com-
plete our generative models, we also develop models for
TC lysis (death). Our first lysis model is a block-specific
logistic regression. Earlier work on Gaussian weighting of
historical TC lysis locations showed the promise of location-
dependant lysis models (Hall & Jewson, 2007). The logistic
regression model predicts TC death at each point based on
latitude, longitude, bearing, and speed. We also include
a kernel density approach to lysis modeling, which draws
TC lengths from a smoothed distribution of TC lifespans.
In table 1, we see that kernel density lysis generally yields
slightly higher coverage rates on held-out TCs.

We train and evaluate our models on 1008 TCs from the
NOAA database between June 1851 and November 2016
(NOAA/AOML, 2017). We use 702 TCs to train the bearing,
speed, and lysis models on 10-degree latitude-longitude
squares. Then we generate potential paths from the initial
observations of the 306 test TCs. To predict trajectories
from a non-AR model, we initialize the path with the first
two TC observations (6 hours), to observe speed and bearing.
To predict trajectories from an AR model, we start with the
first three TC observations (12 hours), to observe change
in speed and change in bearing. For each new/test TC we
generate a set of curves (350 for current analysis) using
a combination of AR or non-AR model and lysis method.
Upon simulating 350 potential TC paths for each test TC
under each method, we construct prediction bands for the
TC paths. This is similar to the approach of the National
Hurricane Center of NOAA, which predicts circular regions
in which a TC center will fall with high probability, up to
five days out from the point of prediction (NOAA/NHC,
2018). In contrast, our approach aims to predict the location
of the TC across its entire lifespan.

To construct prediction bands, we have developed two
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Simulation Curve Type 6-Ball Convex Hull Kernel Density Spherical
Estimate

AR & Logistic 0.88/0.43 0.75/0.33 0.50/0.14 0.31/0.03

AR & Kernel 0.88/0.44 0.86/0.37 0.5570.19 0.31/0.04

Non-AR & Logistic 0.85/0.40 0.72/0.33 0.45/0.13 0.24/0.03

Non-AR & Kernel 0.88/0.43 0.79/0.39 0.50/0.16 0.24/0.03

Table 1. Median proportion of true test TC points captured by their prediction bands / proportion of test TCs with 100% of points captured.

Based on prediction bands attempting to obtain 90% coverage.

approaches based on pointwise confidence intervals and
two approaches based on uniform confidence structure.
One pointwise approach constructs a kernel density from
the set of all simulated points; the prediction band is the
100(1 — &) % level set at a pre-specified coverage level. The
second pointwise approach uses a depth metric proposed
by Geenens and Nieto-Reyes to determine the most central
simulated path (Geenens & Nieto-Reyes, 2017). At each
time step ¢, this approach finds the smallest sphere, cen-
tered at the t*" point of the most central path, that contains
100(1 — «)% of the other simulated TCs’ points at time
t. We connect these spheres to form the prediction band.
Out of the four approaches, this spherical ball method is
closest to the approach of the National Hurricane Center of
NOAA (NOAA/NHC, 2018). The uniform approaches treat
the entire simulated tracks as the objects of interest. One
uniform approach creates a prediction band from the convex
hull of the top 100(1 — )% of deepest curves. The second
uniform prediction band contains a set of balls centered at
all points in the top 100(1 — )% of deepest curves. The
balls have a common radius (8), which is the smallest radius
such that all balls are connected to at least one other ball.
We call this prediction band method the §-ball method.

In table 1, we see that the §-ball prediction bands have both
the highest pointwise and uniform TC coverage, across all
simulation models at &« = 0.10. The difference between
logistic and kernel lysis coverage is negligible for the -
ball TCs. Since the logistic approach incorporates location
information and tends to yield PBs with smaller area, we
recommend the d-ball approach with logistic lysis and AR
simulation models. The §-ball prediction bands are also
smaller than the convex hull prediction bands (the other
proposed uniform prediction band method). One can no-
tice that the d-ball prediction bands still achieve less than
90% pointwise and uniform coverage rates. As a prediction
band method, figure 2 shows that the J-ball method achieves
proper uniform coverage under experimental simulations.
Specifically, figure 2 shows the coverage results of experi-
ments in which we construct the prediction band-generating
TCs and the “true” TC from the same methods. This sug-
gests that the less than 90% coverage rates may be due to a
failure of the generative models to capture the true distribu-
tion of TC paths. Nevertheless, the §-ball prediction bands
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Figure 2. Uniform coverage of prediction bands, i.e. proportion of
times the prediction band captures the whole TC track, generated
from autoregressive and logistic-based lysis models. Pointwise
prediction bands are intrinsically not well suited for this task.

with AR simulation models and kernel lysis are able to cap-
ture a median of 88% of test TC points, and they capture
the full path for 44% of the test TCs.

4. Future Work and Extensions

We anticipate the modeling components to be expanded to
include more extensive and potentially nonparametric time
series models. From a statistical perspective, the current
methodologies fall within a parametric bootstrap framework,
but Bayesian models such as multi-dimensional Gaussian
processes could be easily implemented, given the pipeline’s
flexibility. Incorporating inputs from different scientific
probes (e.g., satellite images, oceanic surface temperatures)
and different climatological models could also be feasible,
by establishing parallel threads within the same pipeline.
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