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Abstract
Due to imbalanced or heavy-tailed nature of
weather- and climate-related datasets, the perfor-
mance of standard deep learning models signifi-
cantly deviates from their expected behavior on
test data. Classical methods to address these is-
sues are mostly data or application dependent,
hence burdensome to tune. Meta-learning ap-
proaches, on the other hand, aim to learn hyper-
parameters in the learning process using different
objective functions on training and validation data.
However, these methods suffer from high compu-
tational complexity and are not scalable to large
datasets. In this paper, we aim to apply a novel
framework named as targeted meta-learning to
rectify this issue, and show its efficacy in dealing
with the aforementioned biases in datasets. This
framework employs a small, well-crafted target
dataset that resembles the desired nature of test
data in order to guide the learning process in a
coupled manner. We empirically show that this
framework can overcome the bias issue, common
to weather-related datasets, in a bow echo detec-
tion case study.

1. Introduction
Drastically improving their performance, machine learning
and, more distinctively, deep learning models, are becoming
the main propulsion of technology in a variety of domains.
Notwithstanding their success, they are still suffering from
different biases in the training data distribution. Biases, re-
gardless of their nature, cause a mismatch between training
and test data distributions, which leads to a poor generaliza-
tion of the model on the test distribution. A palpable form
of these biases appears when the size of different classes or
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groups are imbalanced. When class sizes are not balanced,
imbalanced dataset problem arises (Buda et al., 2018; Huang
et al., 2016; Ting, 2000), where large classes can dominate
the training process, resulting in a model having low ac-
curacy on small classes. A severe form of the problem,
appearing in most real-world big datasets with immense
number of classes, is long-tailed data distribution (Cui et al.,
2019; Bengio, 2015; Ouyang et al., 2016), where the data
distribution is skewed (Kendall et al., 1946). In this case,
most of the data belongs to a few prevailing classes, while
huge number of classes are represented by a few number
of samples. Weather-related datasets, from real-time high
temporal- or spatial-resolution satellite or radar image data,
for detecting and predicting critical incidents mostly fall in
this category. Important critical incidents are rare in such
datasets, making detecting and forecasting these unusual
events difficult for machine learning models.

A generic idea to address these biases is to adapt the train-
ing distribution to the test distribution, whether it is by
resampling, or assigning weights based on the training loss
to have a cost-sensitive weighting scheme (Elkan, 2001;
Ting, 2000; Khan et al., 2018) such as boosting methods
like AdaBoost (Freund & Schapire, 1997) or curriculum
learning (Bengio et al., 2009; Jiang et al., 2018). However,
relying merely on the training distribution has shown to be
not practically efficient (Ren et al., 2018).

A new strand of research is to augment single-objective
learning models with additional data-driven constraints in or-
der to alleviate the effect of bias in training data (Cotter et al.,
2018; Ren et al., 2018; Jiang et al., 2018; Andrychowicz
et al., 2016). The main idea motivating this paradigm shift is
that error rate on training data is not a satisfactory criterion
by itself, and should be accompanied with a data-driven
regularization. An appealing data-driven regularization idea
is to create a target dataset that resembles desired properties
of the test distribution, and impose it to the training process
as an additional constraint. Meta-learning (Andrychow-
icz et al., 2016; Finn et al., 2017) introduces a coupled
framework to interlace the hyperparameter tuning using a
validation set with the training process in order to guide it.

In this paper, we adopt Targeted Meta-Learning framework,
which employs a small target distribution and bilevel pro-
gramming to model the multi-objective structure on both
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training and target distributions. As a bilevel programming,
targeted meta-learning has two levels, one dealing with the
main training process while the other uses a well-tuned tar-
get dataset in order to optimize the weights of each desired
class or group in the dataset. We will show that this frame-
work can overcome the biases in weather-related learning
problems by applying it to detect bow echoes in radar data.

2. Targeted Meta-Learning
Learning the learning process is a common practice nowa-
days in the machine learning field and in meta-learning
approaches (Andrychowicz et al., 2016). However, most
existing studies focus on tuning hyperparameters in the
learning process. We will show that utilizing a well-crafted
target dataset as a guidance for the main learning process
can ameliorate the main learning problem. In targeted meta-
learning, we impose a different objective function on the
target distribution than the one for the training distribution.

The way we define two objective functions and their pa-
rameters is problem-independent. However, for the sake of
exposition, we tackle the problem of imbalanced datasets in
classification models. In all these problems, we are solving
a prediction problem on dataset T with n training sam-
ples, from input space X to label domain Y , where each
sample point is defined as (xi, yi) ∈ X × Y . We use
gi = ` (θ; (xi, yi)), where `(·; ·) is the training loss func-
tion and θ is the parameters of the model, to denote the
training loss on ith sample (xi, yi) ∈ T .

In order to address the aforementioned biases, we need
to weight loss of samples from different classes or groups
separately, hence, we define a weight vector, w ∈ Rc

+,
where c is the number classes in the imbalanced data. Let
D ∈ {0, 1}n×c denote the assignments of n training sam-
ples to c classes. For a model parameter θ and a fixed weight
vector w, we define the loss over training examples as

G(w,θ; T ) = (Dw)
>
g, (1)

where g = [g1, g2, . . . , gn]
> is the vector of losses over

training samples. Equipped with Eq. (1) as the training
goal, for a known weight vector w we can find the optimal
parameters θ by minimizing the objective. However, we
use the samples in the target dataset to adaptively learn the
optimal weight vector and guide the training process. To
this end, we define the loss over a small unbiased target
dataset V as:

F (w,θ∗(w);V) = 1

|V|
∑

(xi,yi)∈V

f(θ∗(w); (xi, yi)), (2)

where |V| is the number of samples in V , θ∗(w) is the mini-
mizer of the loss function in Eq. (1), and f(·; ·) is the target
loss function which may or may not be same as training loss

Figure 1. The proposed Targeted Meta-Learning framework.

`(·; ·). We emphasize that target dataset could be a part of
training dataset or it could be separated from it similar to
the way that a validation dataset is generated.

It is worth noting that despite the similarity of this algorithm
with a universal bilevel programming, the two levels are
being optimized on different data distributions. This is
the key difference that makes the targeted meta-learning
framework capable of solving some challenging problems
with a data-driven regularization using target distribution.
The simple schematic of this framework is depicted in Fig. 1.

3. Case Study: Bow Echo Detection
3.1. Bow Echo

In real-world applications, the primary challenge is often to
detect critical incidents in datasets. Notwithstanding their
importance in the classification tasks, normally those critical
incident samples are scarce in the dataset. Therefore, based
on earlier discussions, a typical classifier would fail miser-
ably in detecting these incidents. One of the conspicuous
examples is severe weather detection using radar, satellite,
and other sensor data. Severe weather conditions such as
tornadoes, thunderstorms, and straight-line winds, are spo-
radic phenomena, but can be spotted in radar or satellite
images with some specific patterns. One of these patterns,
associated with severe weather conditions such as thunder-
storms and straight-line winds, is called bow echo, because
it has archer’s bow shape in radar images as it is depicted in
Fig. 2. The wind with a bow echo can be fierce and reach
violent intensity. Detecting and predicting the formation of
bow echoes, and thus, its related severe weather conditions,
could help to prevent their detrimental consequences.

The term bow echo was coined by Fujita (1978), to describe
strong outflow winds associated with storms that spread out
in straight lines over the ground. Przybylinski (1995) cate-
gorize bow echoes in two categories, namely, bow echo pat-
terns associated with derechoes or straight-line winds, and
bow echo patterns associated with vortices, including tor-
nadoes. Klimowski et al. (2004) classify different types of
bow echoes and their evolution from meteorologists’ point
of view. Our previous studies (Kamani et al., 2016; 2018)
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Figure 2. Radar image of the Continental United States with a bow
echo, May 24, 2008, 10:20 GMT. We magnify the part that bow
echo happened (i.e. red regions).

devoted to automate the detection process of these bow echo
patterns using computer vision techniques followed by a
classification stage. However, it needs some preprocessing
stages, which could be time consuming.

3.2. Radar Images

Our dataset consists of images from NEXRAD level III
radar of National Weather Service (technical name WSR-
88D), which can measure precipitation and wind movement
in the atmosphere. These images are gathered from 160
active high-resolution radar sites in the Continental United
States. We use base reflectivity images from NEXRAD level
III radar, which represent the amount of returned power to
the radar from transmitted signal after hitting precipitation
in the atmosphere. The images have 4-bit color map with
6, 000× 2, 600 pixels of spatial resolution, which are stored
every five minutes.1 That is, in a whole year there are more
than 105K images with mentioned quality. The colormap
associated to these radar images (shown in Fig. 2) has the
range from 0 dBZ to 75 dBZ for reflectivity. The range
of the reflectivity from 0 dBZ to -30 dBZ, alongside with
“No Data” regions (due to spots with beam blockage) is
represented by a black color. Bow echoes can be spotted in
heavy precipitation red regions on radar images (i.e., with
reflectivity higher than 50 dBZ).

3.3. Experimental Results

We use NEXRAD level III radar data in order to create
our dataset of radar images for a whole year of 2008 gath-
ered from 160 high resolution radars across the Continental
United States. We will test the model on a balanced set of
bow echo and non-bow echo samples from the year 2009.
The year 2008 is chosen for training because of high num-
ber of severe weather activities in that year. Despite the
huge number of images each year, number of images with
a bow echo sample on it is very limited. For instance, in
the year 2008 we only have 1, 821 images from 81 different
instances that are labeled as bow echo samples. Therefore,

1http://mesonet.agron.iastate.edu/docs/
nexrad_composites/

Figure 3. Accuracy and recall rate on balanced test dataset after
11 epochs of training. The training dataset contains the complete
radar images from year 2008 with class size ratio of 0.017, while
the test set is a balanced dataset of bow echo and non bow echo
samples from year 2009. Test accuracy and recall rate on bow
echo samples reach to 0.8605 and 0.855, respectively.

this dataset, similar to other severe weather detection and
prediction datasets, is greatly imbalanced with class size
ratio of 0.017. The data distribution is immensely skewed
toward normal data points, as it is the case for most critical
incident detection applications. Thus, we apply targeted
meta-learning framework on this dataset to overcome the
imbalance problem.

For this dataset, we apply targeted meta-learning on
ResNet20 model (He et al., 2016), with image size of
52 × 180. The target distribution is a balanced dataset of
both bow echo and non-bow echo samples from year 2008
with 273 samples that have 137 bow echo samples. The
balanced test set contains 3, 524 images from year 2009,
which has 1, 762 bow echo samples. In this experiment, we
set the training batch size to 50, and target batch size to
10, with learning rates of 0.001 and 0.2 for main and target
learning, respectively. The result of this training after 11
epochs in Fig. 3 reveals that targeted meta-learning has an
exceptional capacity in addressing biases in these kinds of
problems.

4. Conclusions
To alleviate the deficiency of conventional deep learn-
ing models on imbalanced real-world weather prediction
datasets, we advocate the use of a small unbiased target
dataset in a bilevel fashion as a data-driven regularizer for
the main training with biased datasets. Our targeted meta-
learning utilizes this target dataset to learn the weight of
each designated class or category in the training process
using a bilevel program. We empirically show the efficacy
of this framework in dealing with imbalanced data problem
in bow echo dataset.

http://mesonet.agron.iastate.edu/docs/nexrad_composites/
http://mesonet.agron.iastate.edu/docs/nexrad_composites/
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