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Abstract
Surveying fragile ecosystems like coral reefs is
important to monitor the effects of climate change.
We present an adaptive sampling technique that
generates efficient trajectories covering hotspots
in the region of interest at a high rate. A key
feature of our sampling algorithm is the ability to
generate action plans for any new hotspot distribu-
tion using the parameters learned on other similar
looking distributions.

1. Introduction
In this paper, we consider monitoring the health of coral
reefs by sampling visual data from the surface using an
autonomous surface vehicle (ASV). Increase in the ocean
temperatures has resulted in widespread coral bleaching at
an ever-increasing rate (Hoegh-Guldberg, 1999) (Fig. 1a).
Improved monitoring would enhance the currently poor
understanding of the spatial and temporal dynamics of coral
bleaching. Since we are sampling from the surface, higher
information gain is provided in shallower regions where
visibility is better.

We present an anytime (Zilberstein & Russell, 1993) adap-
tive sampling technique that generates paths to efficiently
measure and then mathematically model a scalar field by
performing non-uniform measurements in a given region
of interest. In particular, the class of scalar field we are
interested is some physical or virtual parameter that varies
with location, such as depth of the sea floor or algae blooms
or suspended particles in air. As the measurements are
collected at each sampling location, we can compute an
estimate of the large-scale variation of the phenomenon of
interest. We compute a sampling path that minimizes the ex-
pected time to accurately model the phenomenon of interest
by visiting high information regions (hotspots) using non-
myopic path generation based on reinforcement learning.
Exhaustively sampling each point of an unknown survey
region (Xu et al., 2011; Choset & Pignon, 1998) can be
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(a) Effect of global warming on Corals (Vevers)

(b) System overview of our sampling approach.
Figure 1.

tedious and impractical if the survey space is large and/or
the phenomenon of interest has only a few regions with
important information (hotspots). Also it has been observed
that sampling rates far below the Nyquist rate can still be
information preserving (Venkataramani & Bresler, 2000).
This is the key guiding principle behind active and non-
uniform sampling (Manjanna & Dudek, 2017; Low et al.,
2008; Rahimi et al., 2005; Sadat et al., 2015).

In our approach (Fig.1b), a continuous two-dimensional
sampling region is discretized into uniform grid-cells, such
that the robot’s position x can be represented by a pair of
integers x ∈ Z2. Each grid-cell (i, j) is assigned a score
q(i, j) indicating the expected goodness of the visual data
in that cell. The goal is to maximize the total accumulated
score J over a trajectory τ within a fixed amount of time
T . To specify the robot’s behavior we use a parametrized
policy πθ(s,a) = p(a|s;θ) that maps the current state s of
sampling to a distribution over possible actions a. Our aim
will be to automatically find good parameters θ, after which
the policy can be deployed without additional training on
new problems.
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Figure 2. Robot-centric feature space aggregations. (a) Uniform-grid feature aggregation. (b) 4-feature aggregation. (c) 8-feature
aggregation. (d) 24-feature aggregation. (e) Multi-resolution feature aggregation.

2. Technical Approach
Our algorithm gets trained with a generic score-map (q)
generated by the satellite data from areas that exemplify
the target environments, for example images of coral reefs
(Fig.1b). The system is trained to achieve paths that prefer-
entially cover hotspots at the earlier stages of exploration.
These learned parameters then define a policy π (in the
sense of reinforcement learning) that is then used on the
satellite image or any other sensor map of the target coral
reef (Fig.1b) to generate an explicit action plan. Thus, the
policy does not need to be re-trained for each new reef map.
This property is a key feature of our approach.

In our approach, we formalize the sampling problem as a
Markov Decision Process (MDP). We consider the state s to
include the position of the robot x as well as the map q con-
taining the per-location score for the visual data, s = (x, q).
The action space A consists of four actions (move North,
East, South, or West) and the transitions are deterministic.
Once the visual data at the current cell (i, j) is sampled,
the score q(i, j) is reduced to 0 (Manjanna et al., 2018).
The discounted reward function is defined as γtq(x), with a
discount factor 0 ≤ γ ≤ 1 encouraging the robot to sample
cells with high scores in early time steps t.

2.1. Policy Gradient Method

In policy gradient methods, the gradient of the expected
return (∇θJθ) guides the direction of the parameter update
(θk+1 = θk + η∇θJθ, where η is the learning rate). The
likelihood ratio policy gradient (Williams, 1992) is given by
∇θJθ =

∫
τ
∇θpθ(τ)R(τ)dτ .

We use the GPOMDP and REINFORCE algorithms (Baxter
& Bartlett, 2001; Sutton et al., 2000; Deisenroth et al., 2013;
Kober et al., 2013) for computing the policy gradient as they
have fewer hyper-parameters, making it easier to deploy,
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In this equation, the gradient is based on m sampled trajec-
tories from the system, with s

(i)
j the state at the jth time-step

of the ith sampled roll-outs. Furthermore, b is a variance-
reducing baseline. In our experiments, we set the baseline
to the observed average reward.

2.2. Feature Aggregation

A popular method to define stochastic policies over a set of
deterministic actions is the use of the Gibbs distribution as
policy (also referred to as Boltzman exploration of softmax
policy). We consider a commonly used linear Gibbs softmax
policy parameterization (Sutton et al., 2000; Barto et al.,
1991) given by,

π(s,a) =
eθ

Tφs,a∑
b e

θTφs,b

, ∀s ∈ S;a,b ∈ A, (2)

where φs,a is an l-dimensional feature vector characterizing
state-action pair (s,a) and θ is an l-dimensional parameter
vector.

The final feature vector φs,a is formed by con-
catenating a vector φ′sδaa′ for every action a′ ∈
{North,East, South,West}, where φ′s ⊂ Rk is a feature
representation of the state space, and δaa′ is the Kronecker
delta. Thus, the final feature vector has 4× k entries, 75%
of which corresponding to non-chosen actions will be 0 at
any one time step. We consider five different types of robot-
centric feature designs (φ′s). The first one is to consider a
vector with all the scores in the score-map q as presented in
Fig.2a. This feature vector grows in length as the size of the
sampling region increases resulting in higher computation
times for bigger regions. The four other kinds of feature
aggregations are illustrated in Fig.2b - 2e. These aggrega-
tions have a fixed number of features, corresponding to the
average scores in the feature map in each of the indicated
areas, irrespective of the size of the sampling region.

Fig.2e depicts a multi-resolution aggregation where the fea-
ture cells grow in size along with the distance from the
robot. This results in high resolution features close to the
robot and lower resolution features further from the robot’s
current position. The aggregated feature design is only used
to achieve better policy search (Singh et al., 1995), but the
robot action is still defined at the grid-cell level.
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(a) Discounted total rewards (b) CPU-time vs. world size

Figure 3. Evaluation of feature aggregations. Shaded region indicates the SD over 5 trials on 3 different sized maps.

(a) (b) (c) (d)

(e) (f) (g)

Figure 4. Coral survey: (a) In first column, corals are too deep (> 20ft), hence visual data is bad. Second column presents good quality
visual samples of the coral-heads from shallower regions. (b) Survey region. (c) Scoremap generated. (d) ASV deployed in the field. (e)
and (f) Paths of the boat for 40 mins. (g) Plot illustrating that the number of non-informative visual samples collected by a boustrophedonic
sampler is almost three times the ones collected by our method.

3. Results
Comparing different feature aggregations shows that multi-
resolution aggregated features achieve the highest dis-
counted total rewards (Fig. 3a). Also for the uniform grid
aggregation, the computation increases quadratically with
the size of the area to be mapped (Fig.3b). These results fur-
ther strengthen our observation that immediate actions are
influenced by nearby rewards and the farther low-resolution
features enhance non-myopic planning of the complete tra-
jectory.

In the field, we did a visual survey of the reef with our sam-
pling method with multi-resolution feature representation
and evaluated it using the bathymetric data as a measure for
shallowness of the region covered. Fig.4a presents the im-
ages captured at different locations of the reef region with
varying depths. These images strengthen our hypothesis
of covering shallower reefs to achieve high quality visual
survey of corals. We compare the coverage performed by
our method with a traditional exhaustive coverage technique
using boustrophedonic path. Fig. 4e and Fig.4f illustrate

both the sampling paths of the robotic boat for the first 40
minutes. Fig.4g presents the total number of visual data
points collected from regions which are deeper than 20 feet
(i.e. visual data samples that are not useful to monitor the
health of the corals) plotted against the time spent surveying
the region. The comparison plot illustrates that the number
of non-informative visual samples collected by a boustro-
phedonic sampler is more than twice the ones collected by
our method.

4. Conclusions
The results from exhaustive experiments suggest that multi-
resolution non-uniform state aggregation can have a major
impact on the efficiency of state exploration and modeling.
We further validated this expectation in our field deploy-
ments. The proposed incremental sampling-and-modeling
paradigm can be applied to many domains where the benefits
of efficient sample acquisition should accrue. Such efficient
sampling techniques facilitate a faster understanding of the
effects of climate change on our environment.
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