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 Environmental Grand Challenges of the 21st Century

The Ahr River floats past destroyed houses in 
Insul, Germany

Extreme flooding to increase as 
temperatures rise
The Washington Post September 13, 2021 

Increasing frequency of  natural disasters

 IPCC Report warns of  ‘irreversible’ 
impacts of global warming 2/28/2022

Aral Sea in 2014Aral Sea in 1989

Water under stress

U.S. drought one of the worst in 
1,200 years
Science News APRIL 16, 2020

North American Drought nearly 50 percent more severe



● Advances in ML and 
high-performance 
computing fed by big data 
have revolutionized all 
aspects of our lives. 

● Big data and ML are 
Increasingly being 
considered as an alternative 
to the traditional scientific 
discovery paradigm.

Harnessing the Data Revolution for Scientific Discovery 
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Richards, Catherine E., et al. "Rewards, risks and responsible deployment of artificial intelligence in water systems." Nature Water 1.5 (2023): 422-432.



Abstract Representation of a Physical System

Modeling stream flow in a watershed

SWAT:  physics based model used by hydrological 
community𝑥t : dynamic inputs at time t

z : set of static characteristics 
(latent parameters of the 
system)

𝑦t : response at time t

𝑥t and 𝑦t can have spatial 
dimensions

Problem Formulation:

- Given input driver 𝑥t and system 
characteristics z learn to predict response 
𝑦t



Limitations of Process-based Models

•Incomplete or missing physics (F,G)

–Physics-based models often use approximate forms to meet 

“scale-accuracy” trade-off

–Results in inherent model bias

•Unknown parameters (θ) need to be “calibrated”

–Computationally Expensive

–Easy to overfit: large number of parameter choices, small 

number of samples

•Inefficient use of observations

–Calibration of a Process-based models on a highly observed  

entity does not help improve performance on less observed or 

un-observed entities

•ML has the potential to

–provide high predictive power with sparse observation

–generalize to unseen scenarios

–produce physically consistent results 

–leverage information from highly observed entities to provide 

high quality prediction in unobserved and sparsely observed 

entities
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Modeling stream flow in a watershed

SWAT:  physics based model 
used by hydrological community



BUILDING ML MODELS: LOCAL MODELS

● Temporal  Testing: The training and testing data 

are from the same entities but time period of 

training and testing are different.  

● Build Local model for each entity (rows in the 

top right image)

○ Needs lot of labelled data for each entity

Global ML model with task characteristics 
outperformed individually calibrated physical 
models 



BUILDING ML MODELS: GLOBAL MODELS

● Build a global model using all of the entities 

together

○ ML can leverage data from diverse cross 

section of basins

○ Static characteristics (z) introduce 
heterogeneity in driver- response 
relationship.

○ Trivial merging would lead to sub-optimal 

personalized predictions (Global Model 

Without static)



GLOBAL MODEL WITH STATIC CHARACTERISTICS

● Build a global model using all of the entities 

together

○ ML can leverage data from diverse cross 

section of basins

○ Static characteristics (z) introduce 
heterogeneity in driver- response 
relationship.

○ Incorporate static characteristics during 
training (Global Model with static 
characteristics)

○ CT-LSTM is on  way of Incorporating static 
characteristics 

Global ML model with task characteristics 
outperformed individually calibrated physical 
models 



GLOBAL MODEL WITH STATIC CHARACTERISTICS

● Spatio-Temporal  Testing: The training and 

testing data are from different entities and 

different time period. 

● No observation is available [Ungauged 

Prediction]

○ Build a global model using basin 

characteristics and training data from well 

observed basins

○ Use static characteristics to transfer 

knowledge from a learned global model to 

a new basin in zero-shot fashion



● Importance:
○ Improving the reliability and robustness of models 

● Sources of uncertainty in hydrology
○ Input data uncertainty (e.g., precipitation, 

temperature, land use)
○ Parameter uncertainty (e.g., soil properties, 

vegetation characteristics)
○ Model structure uncertainty (e.g., simplifications, 

assumptions)
○ Natural variability and climate change

● Uncertainty quantification methods
○ Prediction Interval methods [shown in notebook]
○ Monte Carlo dropout
○ Bayesian inference
○ Generalized likelihood uncertainty estimation (GLUE)
○ Markov Chain Monte Carlo (MCMC) methods
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Liu, Siyan, et al. "Uncertainty quantification of machine learning models to improve streamflow prediction under changing 
climate and environmental conditions." Frontiers in Water 5 (2023)

UNCERTAINTY ANALYSIS



● Big data and machine learning offers great opportunity to increase our 
understanding of the Earth’s climate and environment.

● In the presentation, we provide a high-level picture of the topic. For a more detailed 
understanding, there is a more comprehensive tutorial available at google colab, 
which covers the basics. Do check it out for a deeper dive into the subject matter.

● Methods discussed above have wide applicability across diverse domains:
○ Agriculture: Optimizing irrigation systems and managing soil moisture 
○ Urban planning: Designing effective drainage and stormwater management 

infrastructure
○ Climate science: Modeling the water cycle and its interactions with the 

atmosphere and land surface
○ Energy: Assessing water resources for hydroelectric power generation
○ Disaster management: Predicting and mitigating floods, droughts, and other 

water-related hazards
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Concluding Remarks

https://colab.research.google.com/drive/1ICH9FkTCmfAd6XKqFMnaa0vfsFQazDDO#scrollTo=jCJdhR80AYQB&uniqifier=1

