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Environmental Grand Challenges of the 21t Century

IPCC Report warns of ‘irreversible’
impacts of global warming 2/28/2022
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Increasing frequency of natural disasters

U.S. drought one of the worst in

1,200 years
Science News APRIL 16, 2020

North American Drought nearly 50 percent more severe

Increased demand
50% by 2030 (IEA)
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Extreme flooding to increase as

temperatures rise
The Washington Post September 13, 2021
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The Ahr River floats past destroyed houses in
Insul, Germany

Water under stress
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Harnessing the Data Revolution for Scientific Discovery

e Advancesin ML and
high-performance
computing fed by big data
have revolutionized all
aspects of our lives.

® Big data and ML are
Increasingly being
considered as an alternative
to the traditional scientific
discovery paradigm.

%OAK RIDGE BB

Enhanced Earth observation and
real-time hydrological analysis

Neural ESM and 1,
/_climate risk forecasts &

Mobile water testing kits to u
support water justice

Precision allocations and hydraulics -
for sustainable integrated water resources management ',

Intelligent water pipe leak and sewer “
blockage diagnosis

High-fidelity virtual forensics
and testing of new technologies

s

Intelligent dam safety
planning and disaster
decision-making

@ Automated detection of public health
hazards and illegal activities

‘i Smart water-saving devices and decentralized services
Predictive pump

station maintenance
and upgrade schedules
J’ U Advanced water-sensitive urban design with urban digital twins :?7

Rapid optimization of /-,
treatment plant performance « 5%
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Richards, Catherine E., et al. "Rewards, risks and responsible deployment of artificial intelligence in water systems." Nature Water 1.5 (2023): 422-432.
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Abstract Representation of a Physical System

Modeling stream flow in a watershed

SWAT: physics based model used by hydrological
community

A : dynamic inputs at time t

Z : set of static characteristics Problem Formulation:
(latent parameters of the

- Given input driver 2 and system
system)

characteristics z learn to predict response
¥ :response at time t b4

A and yf can have spatial
dimensions
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Limitations of Process-based Models

Xt

PHY*

: Zt
§ (7]

F,G

Yt

Modeling stream flow in a watershed

SWAT: physics based model
used by hydrological community
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eIncomplete or missing physics (F,G)
—Physics-based models often use approximate forms to meet
“scale-accuracy” trade-off
—Results in inherent model bias

eUnknown parameters (8) need to be “calibrated”
—Computationally Expensive

—Easy to overfit: large number of parameter choices, small
number of samples

eInefficient use of observations

—Calibration of a Process-based models on a highly observed
entity does not help improve performance on less observed or
un-observed entities

ML has the potential to
—provide high predictive power with sparse observation
—generalize to unseen scenarios
—produce physically consistent results

—leverage information from highly observed entities to provide
high quality prediction in unobserved and sparsely observed
entities
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BUILDING ML MODELS: LOCAL MODELS

Time steps
e Temporal Testing: The training and testing data 5 [] Tren Data fom el
Observed Basins
are from the same entities but time period of g |
8 : Temporal Testing
training and testing are different. SosioTommpord
N Testing
1 T
e Build Local model for each entity (rows in the Global ML model with task characteristics
) ) outperformed individually calibrated physical
top right image) models

o Needs lot of labelled data for each entity

%QAK RIDGE SR

¥ National Laboratory ~ UNIVERSITY .
OF MINNESOTA Climate Change Al



BUILDING ML MODELS: GLOBAL MODELS

e Build a global model using all of the entities

together e stns
O ML can leverage data from diverse cross ) [7] T Data fom W
section of basins £ remporal Tostng
Spatio-Temporal
N Testing
1 T

o Static characteristics (z) introduce
heterogeneity in driver- response
relationship.

o Trivial merging would lead to sub-optimal (e - : t\
personalized predictions (Global Model £, ‘{p()(fﬁg, Zi)}' Y,
Without static) 5

Zq
. 4
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GLOBAL MODEL WITH STATIC CHARACTERISTICS

e Build a global model using all of the entities

together
O ML can leverage data from diverse cross

section of basins

o Static characteristics (z) introduce
heterogeneity in driver- response
relationship.

o Incorporate static characteristics during
training (Global Model with static
characteristics)

o CT-LSTM is on way of Incorporating static
characteristics

Basins

Time steps
% I:I Train Data from Well
Observed Basins
Temporal Testing
Spatio-Temporal
N Testing
1 T

Global ML model with task characteristics
outperformed individually calibrated physical
models
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GLOBAL MODEL WITH STATIC CHARACTERISTICS

e Spatio-Temporal Testing: The training and
testing data are from different entities and
different time period.

® No observation is available [Ungauged
Prediction]

o Build a global model using basin
characteristics and training data from well
observed basins

o Use static characteristics to transfer
knowledge from a learned global model to
a new basin in zero-shot fashion
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UNCERTAINTY ANALYSIS

e Importance:

©)

® Sources of uncertainty in hydrology
Input data uncertainty (e.g., precipitation,

©)

e Uncertainty quantification methods
Prediction Interval methods [shown in notebook]

©)

©)
©)
©)
©)
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Improving the reliability and robustness of models

temperature, land use)

Parameter uncertainty (e.g., soil properties,

vegetation characteristics)

Model structure uncertainty (e.g., simplifications,

assumptions)

Natural variability and climate change

Monte Carlo dropout
Bayesian inference

Generalized likelihood uncertainty estimation (GLUE)
Markov Chain Monte Carlo (MCMC) methods
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Liu, Siyan, et al. "Uncertainty quantification of machine learning models to improve streamflow prediction under changing
climate and environmental conditions." Frontiers in Water 5 (2023)
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Concluding Remarks

® Big data and machine learning offers great opportunity to increase our
understanding of the Earth’s climate and environment.

® In the presentation, we provide a high-level picture of the topic. For a more detailed
understanding, there is a more comprehensive tutorial available at google colab,
which covers the basics. Do check it out for a deeper dive into the subject matter.

e Methods discussed above have wide applicability across diverse domains:
o Agriculture: Optimizing irrigation systems and managing soil moisture
o Urban planning: Designing effective drainage and stormwater management
infrastructure
o Climate science: Modeling the water cycle and its interactions with the
atmosphere and land surface
o Energy: Assessing water resources for hydroelectric power generation

o Disaster management: Predicting and mitigating floods, droughts, and other
water-related hazards
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https://colab.research.google.com/drive/1ICH9FkTCmfAd6XKqFMnaa0vfsFQazDDO#scrollTo=jCJdhR80AYQB&uniqifier=1

