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Introduction

Wind turbines play a crucial role in combating climate change by harnessing the
force of the wind to generate clean and renewable energy.

Predicting weather events, such as severe wind, can support clean and
renewable energy via wind turbines by:

- Reducing maintenance costs due to damage from wind events.

- Mitigating lost production time from unnecessary or premature shutdowns due to
uncertainty in wind event timing.

- Extending the longevity of turbine equipment with proactive shutdowns.

- Mitigating turbine operation cost to maintain wind power as a financially attractive
clean energy source.

Prior work is limited by the following factors, among others:

- Forecasting methods generally struggle to model high frequency data, such as on
the scale of seconds, with rapid fluctuations and short-lived patterns, resulting in
iIncreased prediction errors.

- Temporal Classification methods can be influenced by label imbalances due to
the scarcity of severe weather events in limited historical data.

- Survival Analysis methods adhere to assumptions, such as the independence of
survival times and censoring mechanisms, which might be violated by the
complex interactions and dependencies inherent in weather patterns.

To address these challenges we propose:

1. A preliminary physics-informed deep learning model to improve predictions of
severe wind events.

2. A multivariate time series extension for this work.

Data Specifications:
- Target: Severe wind events (wind speed >20 m/s)

- Features: Wind speed, wind direction, ambient temperature, distance (m)
and angle (degrees) between turbines

- Duration: 30 days of data for each turbine
- Frequency: Data was downsampled to 0.1 Hz (10 seconds)

* Total number of events: 179
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Fig. 1: Multiple wind events were observed for each turbine within a 1-month period.

Data from 3 wind events prior to day 22 were used to train the model and the
wind event on day 22 was used for the final evaluation to maintain temporal
ordering and prevent data leakage.

Methods

Wind speed recorded at the turbine with the first registered wind event may vary for
subsequent turbines due to wind direction and terrain, among other factors. To
account for discrepancies in velocity, we incorporate a velocity scaling factor, s, that
is learned using a multilayer perceptron (MLP) [1, 2].

ML Physics Hybrid Model:
Wind Turbine Park

A~ d Wind Speed Vector
[ = 5.56
V.S
s = fo(x) 4.4
<
8
x € RVXC %3 33
E

Where N is the

: 2.22
number of turbines
and C'is the number —— Haversine Distance
of features in x. 1.11 Wind Turbine
.. ® Initial Turbine Wind Event
Training: 0
A 1 A ) ‘8.0 1.11 2.22 3.33 444 555 6.67 7.78
MSE(t) = I Z (t—1) Kilometers

Evaluation: Fig. 2: Wind speed, wind direction, and distance

between turbines can inform wind event predictions for

n 1 n
MAE(t) = ~ Z |(t —1)] subsequent turbines.

The proposed hybrid model demonstrates improved performance over both
purely physics and ML baselines.

Additionally, the hybrid model only leverages aggregate information 1-minute prior
to the first turbine wind event yet outperforms the best physics baseline that
updates predictions at nhew events.
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Table. 1: MAE computed across turbine wind event predictions in the test set.
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The ML Physics Hybrid model can more accurately predict wind events (red) with
longer lead times between model inference (yellow) and predicted event (teal)
compared to the best physics baseline model.

Example #2

ML Physics Hybrid Model: t= %
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Fig. 3: Two turbine example cases that compare the ML Physics Hybrid model (top) to the
best physics baseline model (bottom).

ML Physics Hybrid Model
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Wind event impact is avoided for 94% of turbines when a WTS
is activated 1 minute prior to the predicted event.
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Fig. 4: Trade off in false negatives (late predicted events) for larger proactive WTS lead times.

Proposed Model Extensions

We propose to extend our preliminary ML Physics Hybrid model to:

+ Leverage time series data across multiple turbines to infer a time-dependent
velocity representation or scaling factors.

 Leverage attention mechanisms to weight importance of neighboring turbine time
series such as with Graph Attention Networks (GATs) [4].

Conclusions

The proposed hybrid model demonstrates improved performance over both purely
physics and ML baselines. Implementing such a model in practice could mitigate
economic losses due to maintenance and thus, enhance the cost-effectiveness of
wind turbines for clean and renewable energy.
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