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We propose to extend our preliminary ML Physics Hybrid model to: 
• Leverage time series data across multiple turbines to infer a time-dependent 

velocity representation or scaling factors.
• Leverage attention mechanisms to weight importance of neighboring turbine time 

series such as with Graph Attention Networks (GATs) [4].
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To address these challenges we propose:
1. A preliminary physics-informed deep learning model to improve predictions of 

severe wind events.
2. A multivariate time series extension for this work.

Data Specifications:
•  Target:  Severe wind events (wind speed >20 m/s)
•  Features:  Wind speed, wind direction, ambient temperature, distance (m) 
and angle (degrees) between turbines

•  Duration:  30 days of data for each turbine 
•  Frequency:  Data was downsampled to 0.1 Hz (10 seconds)
• Total number of events:  179
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Model Equation MAE (standard deviation)

Baselines

Average 45.57 (7.03)

Physics
6.79 (6.19)

5.03 (4.45)

ML
12.72 (6.94)

6.62 (5.43)

Proposed ML Physics 
Hybrid 2.61 (4.02)
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The proposed hybrid model demonstrates improved performance over both 
purely physics and ML baselines.

Additionally, the hybrid model only leverages aggregate information 1-minute prior 
to the first turbine wind event yet outperforms the best physics baseline that 
updates predictions at new events.

Results

Table. 1: MAE computed across turbine wind event predictions in the test set.
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Data from 3 wind events prior to day 22 were used to train the model and the 
wind event on day 22 was used for the final evaluation to maintain temporal 
ordering and prevent data leakage.

Fig. 1: Multiple wind events were observed for each turbine within a 1-month period.

Wind turbines play a crucial role in combating climate change by harnessing the 
force of the wind to generate clean and renewable energy. 

Predicting weather events, such as severe wind, can support clean and 
renewable energy via wind turbines by:
• Reducing maintenance costs due to damage from wind events.
• Mitigating lost production time from unnecessary or premature shutdowns due to 

uncertainty in wind event timing.
• Extending the longevity of turbine equipment with proactive shutdowns.
• Mitigating turbine operation cost to maintain wind power as a financially attractive 

clean energy source.

Prior work is limited by the following factors, among others:
• Forecasting methods generally struggle to model high frequency data, such as on 

the scale of seconds, with rapid fluctuations and short-lived patterns, resulting in 
increased prediction errors.

• Temporal Classification methods can be influenced by label imbalances due to 
the scarcity of severe weather events in limited historical data.

• Survival Analysis methods adhere to assumptions, such as the independence of 
survival times and censoring mechanisms, which might be violated by the 
complex interactions and dependencies inherent in weather patterns.

The proposed hybrid model demonstrates improved performance over both purely 
physics and ML baselines. Implementing such a model in practice could mitigate 
economic losses due to maintenance and thus, enhance the cost-effectiveness of 
wind turbines for clean and renewable energy.

Wind speed recorded at the turbine with the first registered wind event may vary for 
subsequent turbines due to wind direction and terrain, among other factors. To 
account for discrepancies in velocity, we incorporate a velocity scaling factor, s, that 
is learned using a multilayer perceptron (MLP) [1, 2].

Where N is the 
number of turbines 
and C is the number 
of features in x.

MSE( ̂t ) = 1
N ∑ ( ̂t − t)2

Training:

Evaluation:

MAE( ̂t ) = 1
N ∑ | ( ̂t − t) |

The ML Physics Hybrid model can more accurately predict wind events (red) with 
longer lead times between model inference (yellow) and predicted event (teal) 
compared to the best physics baseline model.

Example #1 Example #2

Fig. 3:  Two turbine example cases that compare the ML Physics Hybrid model (top) to the 
best physics baseline model (bottom).

Fig. 4: Trade off in false negatives (late predicted events) for larger proactive WTS lead times.

Fig. 2:  Wind speed, wind direction, and distance 
between turbines can inform wind event predictions for 
subsequent turbines.

ML Physics Hybrid Model:


