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_____________ Motivaton Methods: deep learning-based adjustment

The Global Carbon Budget (GCB, globalcarbonbudget.org) provides annual estimates of the
anthropogenic CO, emissions and their redistribution among the atmosphere, land, and ocean.
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Starting in 2006, GCB annual updates have relied on observation-based products and standalone
models of land and ocean.

In 2023, for the first time, the GCB update [1] included estimates and predictions with Earth 360

system models (ESMs), which couple global climate models with an interactive carbon cycle.

Using ESMs has the advantage of tracing back the annual carbon budget to global physical
processes [2], thus helping to better inform policy and society on the variable carbon cycle.
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: - : : . |—" Forecast climatology over time <t
Annual-to-decadal (A2D) climate predictions with ESMs drift from the initial model states Adiusted
toward the unconstrained model climatology, leading to forecast errors and biases. fo:'ecast Yiy=h (Yy—Y);) + X; |— Obsclimatology over time <t
N : : |_., Forecast at initial year t
For many applications, A2D forecasts are post-processed to account for such biases [3], typically and lead month {
relying on simple bias and linear trend correction methods [4,5]. Rationale: Bias
corrected Y; =Y, —-Y,;+ X}
We propose a deep learning-based approach to adjust A2D predictions of the global carbon forecast -
budget, focusing here on the adjustment of atmosphere-ocean carbon flux predictions. Y = (Y})) + Y= (Y)}) Field decomposition
Global Anomaly
average  pattern
- CanESM5 decadal predictions [6,7]: Fig 1. (a) Architecture of the decoupled artificial neural network (ANN) used to adjust the forecast. The ANN inputs the
- Specified CO, emissions [8,9]: historical (1850-2014) and SSP2-4.5 scenario (2015-now) anomaly forecast at initial year t and lead month /. Anomalies are relative to the climatology over the training period, given
- 10 ensemble members initialized separately on January 1 for every year in 1981-present by all times before t and / with observations. The upper branch adjusts the globally averaged anomaly. The lower branch

adjusts the anomaly pattern from the global average. The output is the sum of the two, giving the adjusted forecast anomaly.
(b) The adjusted forecast is the sum of the adjusted anomaly and the observed climatology. The approach is like a bias
correction, except that the ANN adjusts the forecast anomalies. The field decomposition allows to treat the global average

- Observation-based data: MPI-SOMFFN [10] available from 1982 to 2021 and the anomaly pattern separately, with each branch targeting a different metric and using a different loss function.
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- The carbon cycle is initialized indirectly through the effect of the model ocean
and atmospheric states in the nudged runs used to initialized the forecasts
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e e " HM’:’:—_: » The ANN model corrects for the ocean carbon sink
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forecastyest -10 08 05 04 -02 00 02 04 06 08 10 anomaly patterns largely improves the forecasts, but
Fig 2. Global air-sea carbon flux for observations (black) and (a) raw, Fig 3. Globally averaged (a) root mean Fig 4. Geographic distribution of ACC for Year 1 other image-processing methods could be used.
(b) bias adjusted, (c) linear-trend adjusted and (d) ANN adjusted square error (RMSE) and (b) anomaly (a) raw, (b) bias adjusted, (c) linear-trend adjusted Similarly for correction of the global mean ts
fgrecasts. Dots.ind-icate Year 1 fqrecasts ano! colors subsequent y.ea.rs. correlation_coefficient (ACC) for the and (d) ANN adjusted forecasts in 1991-2020. > . ) )
Light red band indicates test period. For a given test year, the training raw and adjusted forecasts over the Global averages are shown in Fig. 3b. F.orecast skill |mprovemen.t deterlorate_s \_N'th lead
period compt.'ises a.II pr.evious.years with available observa.tions, with 1991-.2020 hindcast period as a ANN adjusted forecasts markedly outperform the times due to the smaller size of the training sample
a 5-year partial validation period for hyper-parameter tuning. function of forecast year. Values are benchmarks, notably in the Southern Ocean (SO). » Future work includes applications of this
The observed air-sea global carbon flux has a marked nonlinear trend. global av_e(ejragﬁs of RMSEdofr ACCat ea?h The SO is a highly active region of the carbon sink methodology to other emission-driven ESMs models
ANN-based post-processing corrects for the global bias, the overall S:\f/a:rgaréjuiie;?g:g:;s argar?nstn:huea [11], which is responsible for about 40% of the contributing to the GCB annual updates and to the

trend, and variations above the trend, outperforming the benchmarks. anthropogenic CO, global oceanic uptake [12].

observational data. uncertainty quantification of the corrected forecasts
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