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Carbon dioxide (CO,) capture, utilization, and sequestration (CCUS) is expected to
play an important role in the global campaign to limit global warming to 1.5 -C.
However, to achieve this ambitious goal, we need to deploy CO, capture
capabilities at gigaton capacity - approximately 150X increment by 2050.

Currently, CO, capture using chemical solvents is the most mature technology that
has been proven to work at large-scale. However, these capture systems have
large footprints and the energy demand to operate is very high. Studies conducted
by U.S. National Energy Technology Laboratory suggest that implementing
aqueous amine-based CO, capture can reduce the energy efficiency of a coal-fired
power plant by 20-30%. The need for large thermal energy for solvent regeneration
accounts for 20-25% of the operating cost even for advanced solvents.

Solvent-based capture systems are also expensive to build due to the large
footprint of the packed bed towers used for CO, absorption and desorption. As a
result, new separation technologies using either solid sorbents, membranes, or
cryogenics are being developed to address the new material needs to improve the
CO, capture capacity, selectivity over other gases, and to reduce the regeneration
energy demand. There is urgency to develop energy-efficient and compact capture
processes for widespread adoption of CC in the industry to reduce global warming.

Metal-Organic Frameworks for CO2 Capture

A variety of solid sorbent-based materials are being investigated for their CO,
absorption capacity, CO, selectivity, stability, and regeneration capacity to
efficiently remove CO, from point sources. Specifically, metal-organic frameworks
(MOFs), a class of highly porous crystalline materials, have come across as
promising candidates due to their exceedingly high CO, adsorption capacities that
are inherently tunable through their unique structural features and more
importantly, their scalability for industrial applications. MOFs are built through
transition metal clusters and organic linkers into structural building units (SBUs)
that are further extended into well-defined, uniformed structures with high surface
area and structural stability. Those highly tunable SBUs in MOFs offer exceptional
adaptability in isoreticular manipulation as well as their controllable functionalities in
CO, adsorption through their theoretical, infinite combinations among metal ions,
organic linkers, functional group, and optimization of pores spacing.
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For post-combustion CO, capture processes, there is an urgent need to
understand the role of impurities, water in particular, the variability in the
concentrations of impurities in the feed stream and more importantly, their impact
on the stability of the sorbents as well as the energy requirement for the
regeneration processes. However, to-date, only a small number of MOFs have
been studied experimentally to meet target-specific requirements, which warrants
the necessity for a faster and reliable way to design and screen MOFs for post-
combustion capture processes.

Past ML work on MOFs screening was driven by the subject matter expert's (SME)
time-consuming analysis of the properties through feature engineering with
geometric, chemical, and energy-based descriptors. Graph Neural Network, on the
other hand, can be used to represent complex crystal structures of MOF using their
crystallographic information, including but not limited to their unit cell values, space
groups, identities, and position of the atoms, as well as properties of each bond.
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Histogram of the label distribution for working capacity (left) and selectivity (right)

for all MOF simulations. Heavily skewed towards low performance.
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Various types of data in many aspects of our lives can be represented by graphs
and there are solutions already implemented using Graph Neural Networks (GNN).
Recommender systems in online shopping sites, traffic prediction in mobile phone
applications, weather forecasting and our beloved social-networks, all use different
types of GNNs in their core. GNNs are also utilized in science for physics
simulations, molecule classification or molecule design, drug discovery, protein
discovery and many other tasks.

Our proposed method utilizes the CIF file content and encode it in graph
representation to train GNN models to predict material performance as illustrated in
Figure above. Material performances are computed through Grand Canonical
Monte Carlo (GCMC) method. Unlike simple molecules, a single MOF crystal can
make up to a thousand of bonds, which brings a challenge for any ML method to
handle such nonuniform dataset. In our preliminary results, we have demonstrated
GCNs coded in PyG can easily handle the training of such complex data structures
as undirected graphs in a regression problem of predicting MOF properties such as
the CO, working capacity or selectivity. As expected from the problem definition,
i.e., screening large number of potential candidates, most of the MOF crystals are
low performing. This can be seen by the label distribution for working capacity and
selectivity in Figure at the bottom of previous column. This creates a challenge as
the predicted data is skewed for this regression task.

Preliminary Results

In this work, we implemented and trained end-to-end GNN models directly from the
existing CIF content and used the corresponding GCMC data to predict their CO,
working capacity or CO,/N, selectivity as depicted in the illustration above. We
utilized the CIF files for 340,000 MOFs where over 250,000 of the files were
missing their bond distances. Using the unit cell dimensions and atom site
fractional coordinates, we calculated the bond distances to use them as one of the
node features. Along with the bond distances, one-hot encoded bond types
constitute the edge attributes for each MOF. Adjacency matrix which represents
which atoms are connected through bonds (i.e., graph edges) was encoded as
edge lists. Node attributes include the atomic weight of each atom and one-hot
encoded atom types. Crystal unit cell dimensions and angles are also utilized along
with the one-hot encoded crystal type information as shown on the left in Figure 3.
Exploiting the information provided in each CIF files, one can eliminate the need for
hand-picked geometric or chemical descriptors and reduce the SME’s workload.
Initially, we focused on training graph convolution network (GCN) models and
achieved R? score ranging 0.87 to 0.89, easily. A sample test result is shown on
the right side of Figure below. In comparison to our preliminary results, prior ML
work using only SME-designed geometric descriptors alone reached R? score up to
0.75, whereas custom designed atomic property-weighted radial distribution
function (AP-RDF) features can push the ML model R? score to a range of 0.83 and
0.94, respectively. Similarly, it was shown that CNN based end-to-end screening
can achieve R? score up to 0.91.
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Architecture of the GCN trained on the CIF data (left). Initial results for GCN trained for
working capacity (top right) and selectivity (bottom right).
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