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Need for Carbon Dioxide Capture

Carbon dioxide (CO2) capture, utilization, and sequestration (CCUS) is expected to 
play an important role in the global campaign to limit global warming to 1.5 ◦C. 
However, to achieve this ambitious goal, we need to deploy CO2 capture 
capabilities at gigaton capacity - approximately 150X increment by 2050.

Currently, CO2 capture using chemical solvents is the most mature technology that 
has been proven to work at large-scale. However, these capture systems have 
large footprints and the energy demand to operate is very high. Studies conducted 
by U.S. National Energy Technology Laboratory suggest that implementing 
aqueous amine-based CO2 capture can reduce the energy efficiency of a coal-fired 
power plant by 20-30%. The need for large thermal energy for solvent regeneration 
accounts for 20-25% of the operating cost even for advanced solvents.

Solvent-based capture systems are also expensive to build due to the large 
footprint of the packed bed towers used for CO2 absorption and desorption. As a 
result, new separation technologies using either solid sorbents, membranes, or 
cryogenics are being developed to address the new material needs to improve the 
CO2 capture capacity, selectivity over other gases, and to reduce the regeneration 
energy demand. There is urgency to develop energy-efficient and compact capture 
processes for widespread adoption of CC in the industry to reduce global warming.

Metal-Organic Frameworks for CO2 Capture

A variety of solid sorbent-based materials are being investigated for their CO2 
absorption capacity, CO2 selectivity, stability, and regeneration capacity to 
efficiently remove CO2 from point sources. Specifically, metal-organic frameworks 
(MOFs), a class of highly porous crystalline materials, have come across as 
promising candidates due to their exceedingly high CO2 adsorption capacities that 
are inherently tunable through their unique structural features and more 
importantly, their scalability for industrial applications. MOFs are built through 
transition metal clusters and organic linkers into structural building units (SBUs) 
that are further extended into well-defined, uniformed structures with high surface 
area and structural stability. Those highly tunable SBUs in MOFs offer exceptional 
adaptability in isoreticular manipulation as well as their controllable functionalities in 
CO2 adsorption through their theoretical, infinite combinations among metal ions, 
organic linkers, functional group, and optimization of pores spacing.

GNN-based Screening of MOFs

Various types of data in many aspects of our lives can be represented by graphs 
and there are solutions already implemented using Graph Neural Networks (GNN).  
Recommender systems in online shopping sites, traffic prediction in mobile phone 
applications, weather forecasting and our beloved social-networks, all use different 
types of GNNs in their core. GNNs are also utilized in science for physics 
simulations, molecule classification or molecule design, drug discovery, protein 
discovery and many other tasks. 

Our proposed method utilizes the CIF file content and encode it in graph 
representation to train GNN models to predict material performance as illustrated in 
Figure above. Material performances are computed through Grand Canonical 
Monte Carlo (GCMC) method. Unlike simple molecules, a single MOF crystal can 
make up to a thousand of bonds, which brings a challenge for any ML method to 
handle such nonuniform dataset. In our preliminary results, we have demonstrated 
GCNs coded in PyG can easily handle the training of such complex data structures 
as undirected graphs in a regression problem of predicting MOF properties such as 
the CO2 working capacity or selectivity. As expected from the problem definition, 
i.e., screening large number of potential candidates, most of the MOF crystals are 
low performing. This can be seen by the label distribution for working capacity and 
selectivity in Figure at the bottom of previous column. This creates a challenge as 
the predicted data is skewed for this regression task.

Preliminary Results

In this work, we implemented and trained end-to-end GNN models directly from the 
existing CIF content and used the corresponding GCMC data to predict their CO2 

working capacity or CO2/N2 selectivity as depicted in the illustration above. We 
utilized the CIF files for 340,000 MOFs where over 250,000 of the files were 
missing their bond distances. Using the unit cell dimensions and atom site 
fractional coordinates, we calculated the bond distances to use them as one of the 
node features. Along with the bond distances, one-hot encoded bond types 
constitute the edge attributes for each MOF.  Adjacency matrix which represents 
which atoms are connected through bonds (i.e., graph edges) was encoded as 
edge lists. Node attributes include the atomic weight of each atom and one-hot 
encoded atom types. Crystal unit cell dimensions and angles are also utilized along 
with the one-hot encoded crystal type information as shown on the left in Figure 3. 
Exploiting the information provided in each CIF files, one can eliminate the need for 
hand-picked geometric or chemical descriptors and reduce the SME’s workload. 
Initially, we focused on training graph convolution network (GCN) models and 
achieved R2 score ranging 0.87 to 0.89, easily.  A sample test result is shown on 
the right side of Figure below.  In comparison to our preliminary results, prior ML 
work using only SME-designed geometric descriptors alone reached R2 score up to 
0.75, whereas custom designed atomic property-weighted radial distribution 
function (AP-RDF) features can push the ML model R2 score to a range of 0.83 and 
0.94, respectively. Similarly, it was shown that CNN based end-to-end screening 
can achieve R2 score up to 0.91.

For post-combustion CO2 capture processes, there is an urgent need to 

understand the role of impurities, water in particular, the variability in the 

concentrations of impurities in the feed stream and more importantly, their impact 

on the stability of the sorbents as well as the energy requirement for the 

regeneration processes. However, to-date, only a small number of MOFs have 

been studied experimentally to meet target-specific requirements, which warrants 

the necessity for a faster and reliable way to design and screen MOFs for post-

combustion capture processes.

Past ML work on MOFs screening was driven by the subject matter expert’s (SME) 
time-consuming analysis of the properties through feature engineering with 
geometric, chemical, and energy-based descriptors. Graph Neural Network, on the 
other hand, can be used to represent complex crystal structures of MOF using their 
crystallographic information, including but not limited to their unit cell values, space 
groups, identities, and position of the atoms, as well as properties of each bond.

Histogram of the label distribution for working capacity (left) and selectivity (right) 
for all MOF simulations. Heavily skewed towards low performance.

Architecture of the GCN trained on the CIF data (left). Initial results for GCN trained for 
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