

NVIDIA

DiffObs: Generative Diffusion for Global Forecasting of Satellite Observations

Jason Stock^{1,2}, Jaideep Pathak¹, Yair Cohen¹, Mike Pritchard¹,
Piyush Garg¹, Dale Durran¹, Morteza Mardani¹ & Noah Brenowitz¹

¹ NVIDIA Corporation and ² Colorado State University, 2024

Introduction

Presenting a computationally ambitious, autoregressive generative diffusion model (DiffObs) to predict the high-resolution global evolution of daily precipitation from a satellite observational product.

Question: can we generate realistic convectively coupled tropical disturbances across daily to multi-week simulations?

Motivation: tropical atmospheric variability regulates subseasonal predictability, but (a) is challenging to capture realistically in physics-based models and is incompletely understood, and (b) most machine learning approaches use complete state information at smaller spatial/temporal scales; GPU advances enable more ambition today.

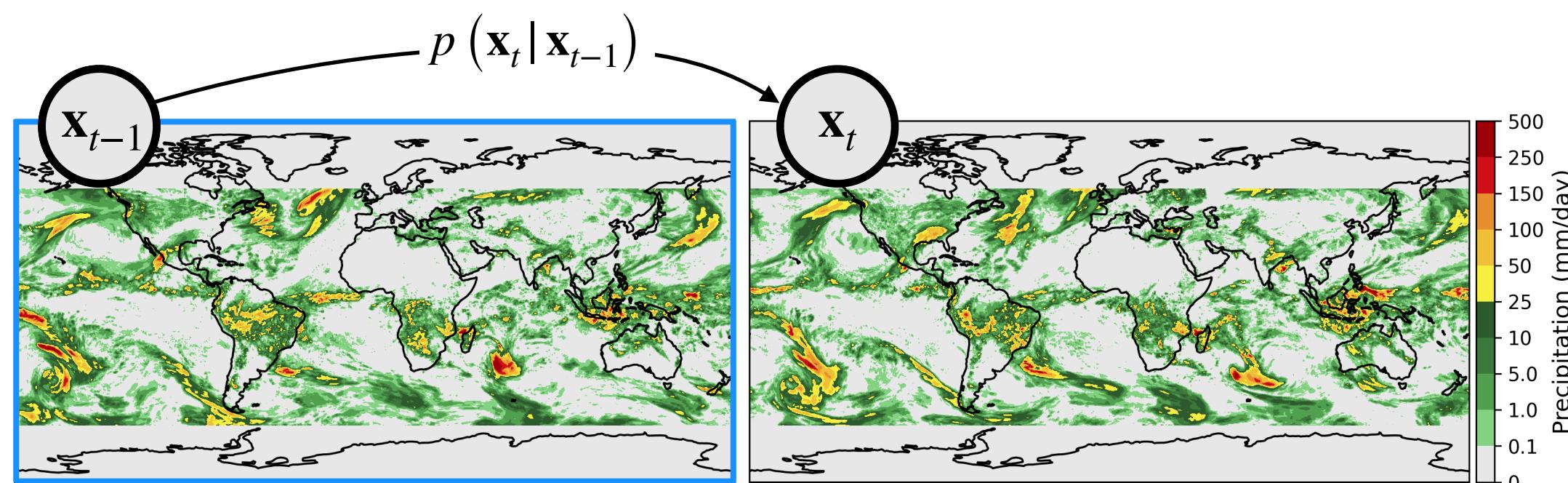


Figure 1: Single step output \mathbf{x}_t from DiffObs when conditioned on the previous state \mathbf{x}_{t-1}

Dataset Details

Final precipitation, half hourly Integrated Multi-satellitE Retrievals for Global Perception Measurements (IMERG) L3 Version 06B data (Figure 1).

- **Aggregation:** all half hour samples are daily-accumulated (in mm/d).
- **Spatial Coverage:** grid coarsening from $0.1^\circ \rightarrow 0.4^\circ$ with cropping in the meridional direction (at poles) between 56.2°N and 61.8°S .
- **Temporal Partitioning:** separated by years, with 2000–2016 (6,041) for training and 2017–2022 (1,729) for testing, total samples in parentheses.

Experimental Results

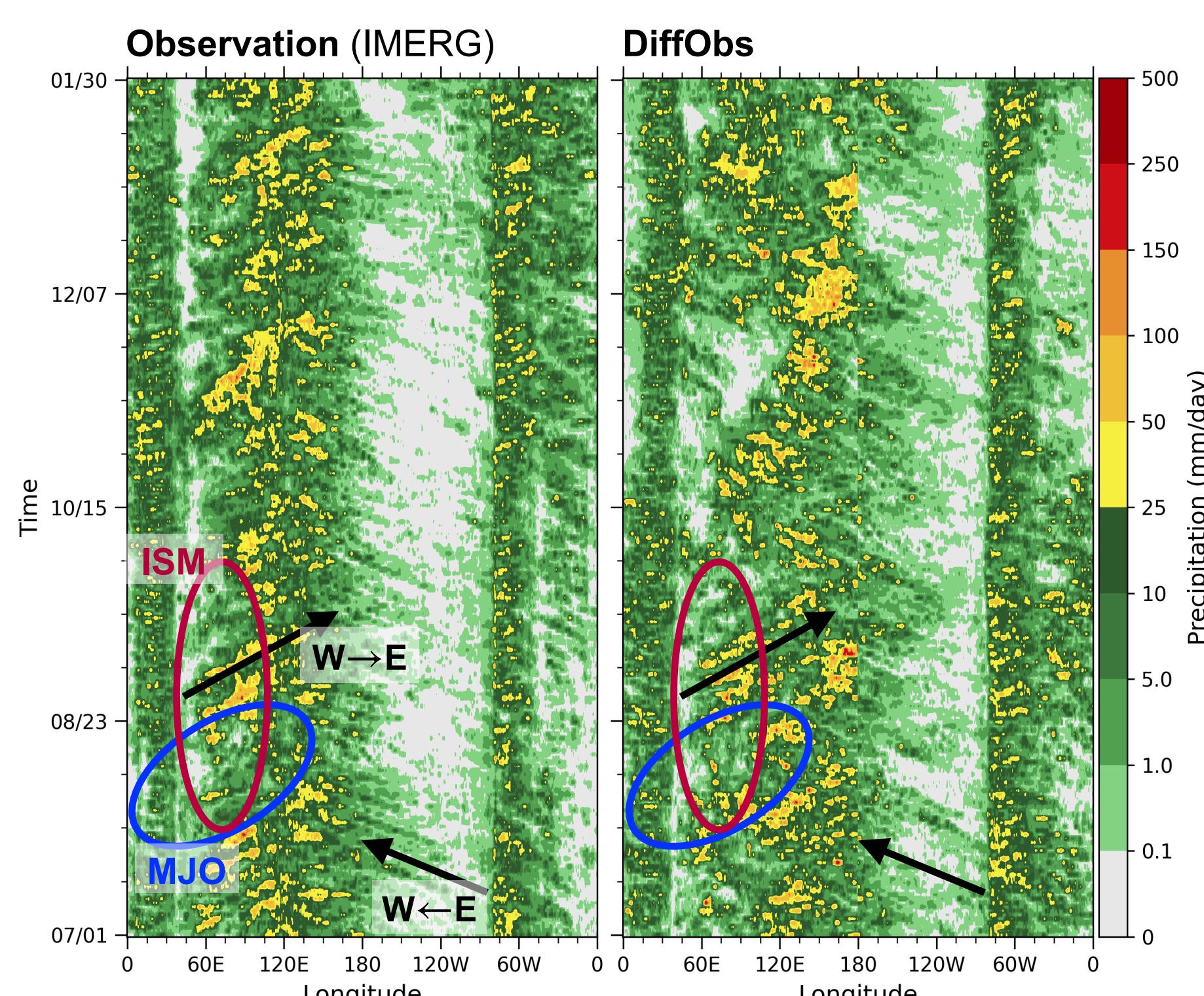


Figure 3: Hovmöller diagrams (between 5°S and 5°N) initialized on July 1, 2020.

Hovmöller Diagram: we generate long rollouts from an initial state, averaging the outputs around the equator and stacking temporally to identify patterns.

Results → superposition of eastward- and westward-propagating tropical disturbances, modulated by a large-scale envelope of slow, eastward moving variability characteristic of the Madden–Julian oscillation (MJO).

Additional Features (?): secondary model with (a) *temporal conditioning* by zonal averaging the cosine of solar zenith angle as a function of the input condition's date and latitudes, and (b) *coordinate conditioning* with static spatially bound sin/cos (lon) to counter the network's rotational equivariance.

Results → suboptimal performance with inconsistent atmospheric dynamics, including missing landmass influence, tropical wave modes, and directionality.

Methodology

Goal: probabilistically forecast day-ahead precipitation, estimating $p(\mathbf{x}_t | \mathbf{x}_{t-1})$ without incorporating any additional priors.

Soln: train a 13.6M param conditional EDM diffusion model (adapted UNet architecture) on a cluster of $256 \times 80\text{GB}$ H100 NVIDIA GPUs (32 nodes) using a global batch size of 1,024 for 12.5M total steps.

Diffusion Details: consider the following **forward SDE**

$$d\mathbf{x} = \sqrt{2\dot{\sigma}(t)\sigma(t)} d\omega_t \quad t \in [0,1],$$

then the **reverse-time SDE** (Figure 2) is given by

$$d\mathbf{x} = -2\dot{\sigma}(t)\sigma(t) \nabla_{\mathbf{x}} \log p(\mathbf{x}; \sigma(t)) dt + \sqrt{2\dot{\sigma}(t)\sigma(t)} d\bar{\omega}_t.$$

We estimate $\nabla_{\mathbf{x}} \log p(\mathbf{x}; \sigma) = (D_\theta(\mathbf{x}, \sigma) - \mathbf{x})/\sigma^2$ with a denoising neural network D_θ conditioned on \mathbf{x}_{t-1} (via channel-wise concatenated) by minimizing

$$\min_{\theta} \mathbb{E}_{\mathbf{x}_{t,t-1} \sim p_{\text{data}}} \mathbb{E}_{\sigma \sim p_{\sigma}} \mathbb{E}_{\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})} \left[\lambda(\sigma) \|D_\theta(\mathbf{x}_t + \mathbf{n}, \mathbf{x}_{t-1}; \sigma) - \mathbf{x}_t\|_2^2 \right]$$

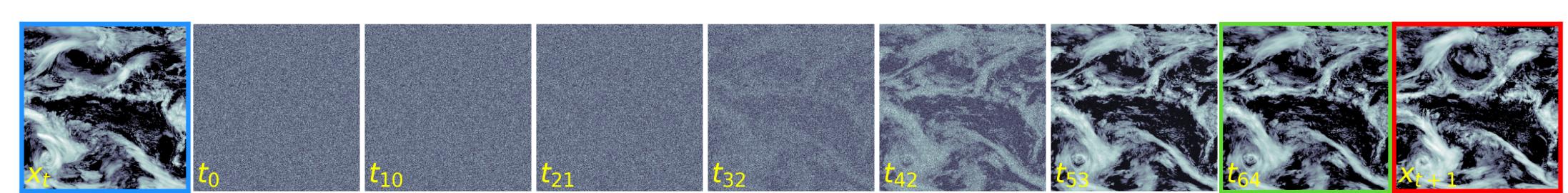


Figure 2: Reverse diffusion with the condition, sampling steps, next step estimate, and target output

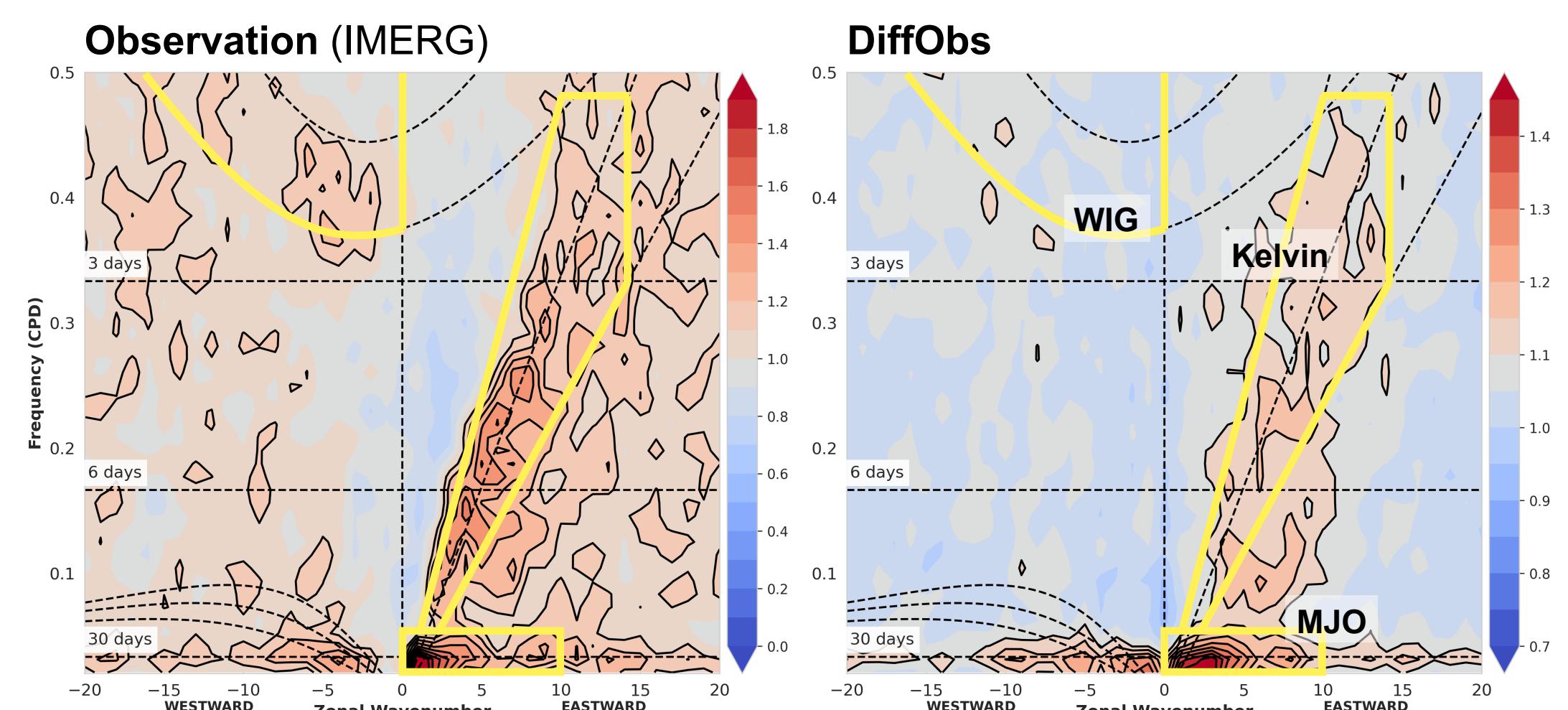


Figure 4: Symmetric / Background Wheeler-Kiladis space-time spectra between 15°S and 15°N

Spectral Analysis: we generate 80 yrs of data on one-day intervals, initially conditioning 1 yr rollouts on Jan 1 for years 2017–2021 and sample with perturbed noise, concatenating the results temporally prior to analysis.

Results → discovery of Kelvin wave and strong MJO spectral signals within the signal-to-noise ratio of the equatorially-symmetric component.

Conclusions

Overview: we autoregressively generate multi-month, high-resolution rollouts of univariate observations, showing with domain-specific diagnostics (Hovmöller / Wheeler-Kiladis) stable rollouts and a realistic spectrum of tropical wave modes.

Takeaways: global diffusion models trained on sparse observations of the world show promise for applications in subseasonal and climate prediction.

Predictability (?): not our main focus, yet we find the best skill (RMSE / FSS) out to 3- to 5-day lead times when compared to persistence and climatology.

Future Work: leverage lower-level products, explicitly model the temporal distributions, and compare to numerical weather prediction and reanalysis.