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Conclusions
Overview: we autoregressively generate multi-month, high-resolution rollouts of 
univariate observations, showing with domain-specific diagnostics (Hovmöller / 
Wheeler-Kiladis) stable rollouts and a realistic spectrum of tropical wave modes. 

Takeaways: global diffusion models trained on sparse observations of the world 
show promise for applications in subseasonal and climate prediction. 

Predictability (?): not our main focus, yet we find the best skill (RMSE / FSS) 
out to 3- to 5-day lead times when compared to persistence and climatology. 

Future Work: leverage lower-level products, explicitly model the temporal 
distributions, and compare to numerical weather prediction and reanalysis.

Experimental Results

Spectral Analysis: we generate 80 yrs of data on one-day intervals, initially 
conditioning 1 yr rollouts on Jan 1 for years 2017–2021 and sample with 
perturbed noise, concatenating the results temporally prior to analysis. 
Results  discovery of Kelvin wave and strong MJO spectral signals within the 
signal-to-noise ratio of the equatorially-symmetric component.

→

Methodology
Goal: probabilistically forecast day-ahead precipitation, estimating  
without incorporating any additional priors.  

Soln: train a 13.6M param conditional EDM diffusion model (adapted UNet 
architecture) on a cluster of  H100 NVIDIA GPUs (32 nodes) using 
a global batch size of 1,024 for 12.5M total steps. 

Diffusion Details: consider the following forward SDE 

 

then the reverse-time SDE (Figure 2) is given by 

 

We estimate  with a denoising neural network 
 conditioned on  (via channel-wise concatenated) by minimizing 


p (xt |xt−1)

256 × 80GB

dx = 2 ·σ(t)σ(t) dωt t ∈ [0,1],

dx = − 2 ·σ(t)σ(t)∇xlog p (x; σ(t)) dt + 2 ·σ(t)σ(t) dω̄t .

∇xlog p (x; σ) = (Dθ (x, σ) − x)/σ2

Dθ xt−1

min
θ

𝔼xt,t−1∼pdata
𝔼σ∼pσ

𝔼n∼𝒩(0, σ2I) [λ(σ)∥Dθ (xt + n, xt−1; σ) − xt∥2
2]

Jason Stock1,2, Jaideep Pathak1, Yair Cohen1, Mike Pritchard1, 
Piyush Garg1, Dale Durran1, Morteza Mardani1 & Noah Brenowitz1 

 

1 NVIDIA Corporation and 2 Colorado State University, 2024

Figure 2: Reverse diffusion with the condition, sampling steps, next step estimate, and target output

Dataset Details
Final precipitation, half hourly Integrated Multi-satellitE Retrievals for Global 
Perception Measurements (IMERG) L3 Version 06B data (Figure 1). 

• Aggregation: all half hour samples are daily-accumulated (in mm/d). 
• Spatial Coverage: grid coarsening from ° ° with cropping in the 

meridional direction (at poles) between °N and °S. 
• Temporal Partitioning: separated by years, with 2000–2016 (6,041) for 

training and 2017–2022 (1,729) for testing, total samples in parentheses.
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Figure 1: Single step output  from DiffObs when conditioned on the previous state xt xt−1
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Figure 4: Symmetric / Background Wheeler-Kiladis space-time spectra between °S and °N15 15
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Figure 3: Hovmöller diagrams (between °S and °N) initialized on July 1, 2020.5 5

Question: can we generate realistic convectively coupled tropical disturbances across daily to multi-week simulations? 

Motivation: tropical atmospheric variability regulates subseasonal predictability, but (a) is challenging to capture 
realistically in physics-based models and is incompletely understood, and (b) most machine learning approaches use 
complete state information at smaller spatial/temporal scales; GPU advances enable more ambition today.

Presenting a computationally ambitious, 
autoregressive generative diffusion model 
(DiffObs) to predict the high-resolution 
global evolution of daily precipitation from 
a satellite observational product.

Introduction

Hovmöller Diagram: we generate long rollouts from an initial state, averaging 
the outputs around the equator and stacking temporally to identify patterns. 
Results  superposition of eastward- and westward-propagating tropical 
disturbances, modulated by a large-scale envelope of slow, eastward moving 
variability characteristic of the Madden–Julian oscillation (MJO). 

Additional Features (?): secondary model with (a) temporal conditioning by 
zonal averaging the cosine of solar zenith angle as a function of the input 
condition’s date and latitudes, and (b) coordinate conditioning with static 
spatially bound  to counter the network’s rotational equivariance. 
Results  suboptimal performance with inconsistent atmospheric dynamics, 
including missing landmass influence, tropical wave modes, and directionality.
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