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ABSTRACT

Monitoring Greenhouse Gas (GHG) concentrations and emissions is essential to
mitigate climate change. Thanks to the large amount of satellite data available,
it is now possible to understand GHGs’ behaviours at a broad scale. However,
due to remote sensing devices technological limitations, the task of global high
resolution (HR)) monitoring remains an open problem. To avoid waiting for new
missions and better data to be generated, it is therefore relevant to experiment
with processing methods able to improve existing datasets. Our paper proposes
to apply Super Resolution (SR), a Deep Learning (DLJ) approach commonly used
in Computer Vision (CV)), on global L3 satellite data. We produce a daily high
resolution global CO, dataset that opens the door for globally consistent point
source monitoring.

1 INTRODUCTION AND MOTIVATIONS

According to the sixth IPCC report, GHGs are responsible for an increase of the global surface tem-
perature of over 1°since 1850-1900 (Core Writing Team et al.). Amongst GHGs, the report high-
lights the predominant role played by CO, and CH4. Accurately understanding the emission process
of can lead to more impactful decision making and actions to reduce global warming. Ac-
cordingly, emission datasets have been compiled by aggregating estimations and reports (Climate
TRACE coalition, [2022; |European Environment Agency, 2023). Besides, daily monitoring allows
for emissions tracking (Nassar et al.,[2021). A global HR daily GHG monitoring dataset could there-
fore help validate and complete these inventories. Unfortunately, remote sensing satellite imagery
is either sparse and incomplete, as it will be generated following the swath of the satellite (Earth
Science Data Systems, NASA| 2016)), or possesses limited spatial or temporal resolution when pro-
cessed to produce global maps. Studies have shown that machine learning methods can help over-
come part of these limitations (He et al., 2022). The work described in this paper focuses on CO,
monitoring and brings the following contributions:

* We apply to the Orbiting Carbon Observatory 2 (QCO-2)) L3 dataset to generate
global maps of column-averaged dry air mole fraction of atmospheric CO2 (XCOZ2). The
framework can be transferred to other GHGs and is not specific to CO,.

¢ We introduce a new dataset with a resolution of 0.03°*0.04°. This dataset offers the
possibility to perform global XCO2 monitoring consistently.

* We show that our method does not introduce noise compared to the original Low Reso-
lution (CR) dataset and offers a quantitative improvement in performance over alternative
methods.
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2 RELATED WORKS

Different methods have been used to produce global mapping datasets of XCO2] Statistical meth-
ods rely on interpolation to fill the gaps left by satellite-observed [XCO2] Kriging interpolation and
its variations compose the majority of the literature done following this approach (He et al., 2020;
Zammit-Mangion et al}, 2018} [Bhattacharjee & Chenl, [2020). Chemical Transport Model
simulations constitute a branch of statistical physics-informed methods to generate complete global
data on[XCQ2] and in particular fluxes (Jacobson et al,[2023} [Pillai & Neininger, 2012). The com-
putational cost of these simulations unfortunately restricts the resolution of the global maps to coarse
resolution. Other paradigms involve the fusion of multiple sensor’s data in order to start with a more
comprehensive covered area and therefore reduce the uncertainty of the generated maps (Wang et al.,
2023). Finally, Machine Learning (ML) and [DI}based methods are also found in the literature (He
et al., |2022; |L1 et al., 2022)).

3 METHODS

3.1 SUPER RESOLUTION

[SRlrefers to the process of enhancing the resolution or quality of an image beyond its original level.
This technique is commonly used in image processing and computer vision to improve the clarity
and details of images. A higher-resolution version of an image is formed based on a[LRinput (Tsai
& Huang, |1984)). When the input consists of only one image, it is referred to as Single Image Super
Resolution (Yang et all[2019). As[CVlframeworks mostly rely on deep learning techniques,
the current state of the art of [SR| models in remote sensing relies on neural networks (Wang
et al,[2022b)). The reconstructed output of a[SRImodel presents features with greater detail than the
[CRlinput, thus enabling better analysis of the data. However, as[SRlis an inverse problem, different
models will associate different images to the same input (Jo et al 2021). In this work, the
input is [XCO2] data under matrix form. Converting this data to RGB images would require extra
preprocessing steps, which would add noise to our input data. We therefore consider the task as a
task where [XCO2] maps are 1-channel images. Our model’s architecture is a modified version
of the framework from [Haris et al. (2020), which was selected based on a benchmark on [RS] data
done by Wang et al.|(2022a). This model performs multiple up- and down-samplings iteratively to
better extract the relation between[LR]and [HR]images. Convolutional and deconvolutional layers are
associated to form the upsampling and downsampling blocks. It was initially developed to perform
up to 8-times upsampling, so we adapted the kernel size, padding and striding. To avoid excessive
memory usage and increase the training speed, we also modified the layers configuration to reduce
the number of weights and applied the Distributed Data Parallel framework from PyTorch (Li et al.
2020). We have been able to increase the resolution 16-times, effectively bringing the [XCO2| global
maps’ resolution close to 1km*1km, which is necessary to detect emission point sources.

4 DATASETS

4.1 TRAINING

As there is no [HRIXCO?] data for our model to learn from, we use the L3 products of the Land
Surface Temperature dataset from MODIS (Wan et al.||2015)) during the training phase. After
downsampling the data, our model learns to reconstruct [LSTImaps to its original resolution, which
is approximately the same spatial resolution as our target resolution (see Table [I).

Table 1: Comparison of spatial resolution between L3 data from OCO-2 and MODIS satellites

IXCO2L3 (OCO-2) ILSTIL3 (MODIS)
LR data (in degree) 0.5°*0.625° 0.8°*%0.8°
HR data (in degree)  0.031°*0.039°(target) 0.05°*0.05°
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4.2 LOW RESOLUTION DATASET

The[OCO-2]and its successor OCO-3 are satellites from NASA. Their mission is to monitor CO
dering et all, [2012) and they possess a radiometric resolution of the order of 1ppm. We use the L3
assimilated dataset from as our [CR] dataset. This dataset consists of
global maps of at a resolution of 0.5°*0.625°. It is available at a daily or monthly temporal
resolution, produced using NASA’s modeling and data assimilation system.

4.3  VALIDATION DATASET

The Total Column Carbon Network (Wunch et al} 201T) is a family of ground sensors
with sites located around the world that monitors column concentrations from CO,,CHy4
201T), CO, and N,O (Sha et al, [2020). To assess the accuracy of the [SRIXCO2] maps, we
compare them with the latest version of[[CCON]data (Laughner et al.,|2023)). This data was obtained
from the TCCON Data Archive hosted by CaltechDATA at https://tccondata.orgl

5 RESULTS AND DISCUSSION

We compare our results with pre-existing methods which also produce global data. Our benchmark
consists of a dataset from Wang et al.| (2023)) obtained from the fusion of OCO-2 L2 data with the
CAMS re-analysis dataset (Agusti-Panareda et al.} 2022)) and a[HRldataset also derived from OCO-2
L3 data relying on bicubic interpolation as described in[Xiang et al| (2022)). These were selected for
the quantitative quality of the produced data and their spatial and temporal availability.
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Figure 1: Visualisation of [XCO2] over western Europe according to the four datasets used for this benchmark.
From top left to bottom right: (a)[CRldataset, (b) after[SR](ours), (c) fusion dataset, (d) after bicubic interpola-
tion. On this example, we observe a average bias difference between the LR and the fusion maps.

Figure[T]shows a visual comparison between our model and the benchmark methods for[XCO2] data
over western Europe. A smoothing effect is noticeable on the bicubic interpolation map over the
North Sea (subfigure d) while more high-frequency details are created using our method (subfigure
b).

Results displayed in Table [2] demonstrate that our [SRl model is able to significantly increase the
resolution of the original [CR]dataset while improving on all the metrics. The comparison also holds
when comparing the super resolved [XCO2lmaps with other methods. The fusion dataset presents on
average a Root Mean Square Error (RMSE) well above 1ppm and a Mean Absolute Error (MAE)
of 0.85ppm while our dataset lies at 0.92ppm and 0.70ppm respectively. Bicubic interpolation is a


https://tccondata.org
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close second on most metrics. Detailed results based on sensor location are presented in Appendix
[BJand confirm that our method is more consistent spatially.

Table 2: Evaluation of the produced [XCO2|data according to the benchmark

The best value for each metrics is highlighted. LR is the original OCO-2 L3 data, BIC is derived from bicubic
interpolation, and Fusion is from (2023). Metrics are the average over every [TCCON| ground

sensors location between 2015 and 2020

SR (ours) LR BIC Fusion
RMSE  0.9180 0.9441 0.9436 1.1196
R? 0.9673 0.9654 0.9655 0.9514
MAE  0.7027 0.7182 0.7190  0.8505

To quantitatively assess the difference between[SRlusing our model and using bicubic interpolation,
we introduce an Improvement Ratio ([R) for each[SRImethod. We define it as the following:

i Nisvz;feroved
IRSZt@ = Nsife (1)

samples
where for each site, IV, ;;’f;m 4 represents the number of times where[SRlis closer to the ground truth

and N, ;ﬁfmles represents the total number of samples for this site. A ratio of 1 (or 100%) indicates
that the model always improves on the[LRIwhile a ratio of 0 indicates that the model always produces

worse results.
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Figure 2: [[Rl comparison between our model (blue) and bicubic (red) with available ground sensors
data. The list of ground sensors abbreviations is presented in Appendix@

Figure [2] shows that our model performs more consistently across the different sites, with the
Rl never going below 40% and only being worse than the bicubic one on 5 sites out of 24. This

consistency is confirmed overall with our model producing an average[IRlof 57% against an average
[[Rl of 51% for bicubic

5.1 DISCUSSION

Our results show that our model outperforms other methods quantitatively. Furthermore, while they
prove that it understands [XCO2J's behaviour better than statistical interpolation, we believe that
more performance can be unlocked if we train the model on a physical variable closer to CO, than
temperature. Additionally, including sparse data acquired from satellites could also lead to better
results by guiding the model in its reconstruction of a[SRImap. Frameworks already exist to combine
additional data with[M[models (Buizza et al} 2022). Finally, [Balashov et al.| (2022) have indicated
that XCH4 L3 maps based on TROPOMI (Veefkind et all,[2012) data are currently being developed
and will be released in the future. This will allow this work to be transferred to another
increasing the relevance of our gas-agnostic framework.
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6 CONCLUSION

In this paper we proposed a method to create a globally consistent daily [HRIXCQO2] dataset. Our
experiments have shown that our model is able to increase the resolution of the L3 maps produced
by the to the order of 3km*4km while also improving concentration monitoring: our model
is more robust spatially and temporally compared to other methods. This represents a good first
attempt at applying [SR] to [XCO2l fields and areas of improvement have been highlighted for future
works. Moreover, the produced dataset provides the opportunity to study and quantify the impact of
known sources on their surroundings or detect unreported point sources.
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A TCCON VALIDATION SITES

Table 3: sites used in our experiments

Site (abbreviation) Lat Lon Used Data Range
Bremen, Germany (br) 53.10N 8.85E 2015-2020
Burgos, Philippines (bu) 18.533N 120.650E 2017-2020
Caltech, USA (ci) 34.1362N 118.1269W 2015-2020
Darwin, Australia (db) 12.4246S 130.8917E 2015-2020
Edwards, USA (df) 34.958N 117.882W 2015-2020
East Trout Lake, Canada (et) 54.353738N  104.986667W 2016-2020
Eureka, Canada (eu) 80.05N 86.42W 2015-2020
Garmisch, Germany (gm) 47.476N 11.063E 2015-2020
Hefei, China (hf) 31.91N 117.17E 2015-2018
Izana, Tenerife (iz) 28.3N 16.5W 2015-2020
Jet Propulsion Lab, USA (jf)  34.958N 117.882W 2015-2018
Saga, Japan (js) 33.240962N  130.288239E 2015-2020
Karlsruhe, Germany (ka) 49.100N 8.439E 2015-2020
Lauder 02, New Zealand (1)  45.038S 169.684E 2015-2018
Lauder 03, New Zealand (Ir)  45.038S 169.684E 2018-2020
Nicosia, Cyprus (ni) 35.141N 33.381E 2019-2020
Orleans, France (or) 47.97N 2.113E 2015-2020
Park Falls, USA (pa) 45.945N 90.273E 2015-2020
Paris, France (pr) 48.846N 2.356E 2015-2020
Reunion Island, France (ra) 20.901S 55.485E 2015-2020
Rikubetsu, Japan (tj) 43.4567N 143.7661E 2015-2019
Sodankyld, Finland (so) 67.3668N 26.6310E 2015-2020
Ny Alesund, Svalbard (sp) 78.9N 11.9E 2015-2020
Wollogong, Australia (wg) 34.406S 150.879E 2015-2020
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B METRICS COMPARISON

Below are the detailed results of each metric: R? coefficient and [MAEl For each site, the
best and second best methods are coloured in blue and red respectively. LR is the original OCO-2
L3 dataset, BIC is the dataset derived from bicubic interpolation and Fusion is the dataset from

Wang et al.| (2023).

Table 4: RMSEl comparison to TCCONl groundsensors

Site SR (ours) LR BIC Fusion
Eureka (eu) 1.3383 1.3586 1.3211 1.9763
Saga (js) 0.9605 0.9680 0.9359  1.2065
Izana (iz) 0.5865 0.5959 0.5928  0.6537
Caltech, Pasadena (ci) 1.2554 1.4637 1.4983 1.0894
Wollogong (wg) 0.7967 0.8212  0.7263  0.8271
Lauder 03 (Ir) 0.6177 0.6244  0.6221  0.7700
Bremen (br) 0.9755 0.9960 0.9465 1.2262
Ny Alesund (sp) 1.1519 1.1783 1.1217 1.5574
Lauder 02 (11) 0.4979 0.5042  0.5064 0.6110
Park Falls (pa) 0.7756 0.7664 0.7784  1.0751
Hefei (hf) 1.3090 1.4783 1.2092 1.7435
Jet Propulsion Lab (jf) 1.1547 1.3822  1.3625 1.0809
Reunion Island (ra) 0.5984 0.5968 0.6022 0.7413
East Trout Lake (et) 0.7980 0.7971 0.8163 1.1310
Paris (pr) 1.3653 1.3867 1.3702  1.5325
Garmisch (gm) 0.9025 09114 1.0472  1.1098
Sodankyli (so) 0.9072 0.9149 09190 1.4612
Orleans (or) 1.1226 1.1175 1.1489 1.1886
Burgos (bu) 0.5196 0.5217 0.5557 0.7840
Edwards (df) 0.6880 0.6890 0.6482  1.0041
Rikubetsu (rj) 0.8888 0.9363  0.8300  1.3907
Karlsruhe (ka) 1.1230 1.1354  1.1852  1.3998
Nicosia (ni) 0.7677 0.7856  0.7864  1.0606
Darwin (db) 0.7107 0.6993  0.6969  0.9315

10
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Table 5: R? coefficient comparison to[TCCON] groundsensors

Site SR (ours) LR BIC Fusion
Eureka (eu) 0.9414 0.9396 09429 0.8722
Saga (js) 0.9497 0.9489 0.9522  0.9206
Izana (iz) 0.9720 0.9711 09714  0.9653
Caltech, Pasadena (ci) 0.9344 0.9108 0.9065 0.9506
Wollogong (wg) 0.9695 0.9676  0.9746  0.9671
Lauder 03 (Ir) 0.8866 0.8842 0.8850  0.8239
Bremen (br) 0.9656 0.9641 09676 0.9456
Ny Alesund (sp) 0.9492 0.9469 0.9518 0.9072
Lauder 02 (11) 0.9648 0.9639 09636  0.9470
Park Falls (pa) 0.9780 0.9785 0.9778 0.9577
Hefei (hf) 0.8371 0.7922 0.8610  0.7109
Jet Propulsion Lab (jf) 0.8003 0.7139  0.7220  0.8250
Reunion Island (ra) 0.9803 0.9804 0.9801  0.9698
East Trout Lake (et) 0.9677 0.9678  0.9662  0.9351
Paris (pr) 0.9169 0.9142 09163 0.8953
Garmisch (gm) 0.9641 0.9634 09517 0.9457
Sodankyli (so) 0.9747 0.9743 09741 0.9344
Orleans (or) 0.9499 0.9503  0.9475 0.9438
Burgos (bu) 0.9619 0.9616 0.9565 0.9133
Edwards (df) 0.9808 0.9807 0.9829  0.9591
Rikubetsu (rj) 0.9599 0.9554  0.9650 0.9017
Karlsruhe (ka) 0.9494 0.9482  0.9436 0.9213
Nicosia (ni) 0.8904 0.8852  0.8850  0.7908
Darwin (db) 0.9768 0.9775 09777  0.9601

Table 6: comparison to [TCCON] groundsensors

Site SR (ours) LR BIC Fusion
Eureka (eu) 1.0063 1.0300 0.9877  1.5999
Saga (js) 0.7932 0.8003 0.7718  1.0232
Izana (iz) 0.4684 0.4778 0.4735 0.4869
Caltech, Pasadena (ci) 1.0030 1.1872 1.2032 0.8380
Wollogong (wg) 0.6091 0.6292  0.5511  0.6526
Lauder 03 (Ir) 0.5136 0.5190 0.5194 0.6141
Bremen (br) 0.7651 0.7860 0.7410  0.9359
Ny Alesund (sp) 0.9945 1.0191 0.9647 1.2495
Lauder 02 (11) 0.3846 0.3903 0.3903 0.4704
Park Falls (pa) 0.6042 0.6036  0.6102  0.8507
Hefei (hf) 1.0729 1.2070  0.9880  1.4447
Jet Propulsion Lab (jf) 0.9821 1.1899 1.1811 0.8343
Reunion Island (ra) 0.4590 0.4584  0.4629 0.5769
East Trout Lake (et) 0.6309 0.6340 0.6478 0.9017
Paris (pr) 1.0909 1.0962 1.0935 1.2017
Garmisch (gm) 0.7116 0.7143  0.8455 0.8589
Sodankyli (so) 0.6997 0.7061 0.7071  1.1517
Orleans (or) 0.9229 0.9161 09503 0.9360
Burgos (bu) 0.4024 0.4097 04317 0.6334
Edwards (df) 0.5446 0.5423  0.5088  0.8139
Rikubetsu (1j) 0.6595 0.6974 0.6179 1.0873
Karlsruhe (ka) 0.9225 0.9346  0.9858  1.1060
Nicosia (ni) 0.6477 0.6666 0.6695  0.8737
Darwin (db) 0.5641 0.5552  0.5495  0.7219
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