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ABSTRACT

Climate modelling tasks involve assimilating large amounts of geospatial data
from different sources, such as simulators and measurements from weather sta-
tions and satellites. These sources of data are weighted according to their uncer-
tainty, so good quality uncertainty estimates are essential. Gaussian processes
(GPs) offer flexible models with uncertainty estimates, and have a long track
record of use in geospatial modelling. However, much of the research effort, in-
cluding recent work on scalability, is focused on statistically stationary models,
which are not suitable for many climatic variables, such as precipitation. Here we
propose a novel, scalable, nonstationary GP model based upon discrete wavelets,
and evaluate them on toy and real world data.

1 INTRODUCTION

Climate change poses a major challenge in which probabilistic modelling has a lot to offer. The
governing physical equations are well-studied, giving a powerful source of prior knowledge, but
are typically nonlinear and often chaotic, so that uncertainty in initial conditions, boundary values,
or parameters compound rapidly and limit the capability to generalise over both space and time,
particularly for resolving on small spatial scales or forecasting. Incorporating data-based modelling
methods, the core of modern machine learning techniques, is critical to correct for these mismatches
in either model or initialisation.

Reasoning quantitatively about uncertainty is crucial, both for weighting data against prior physical
knowledge, and for feeding into downstream applications, for example to optimise sensor place-
ment, or make risk-aware forecasts of renewable energy generation. These methodologies are even
more important in regions where measurements are relatively scarce (such as remote mountainous
regions), or systems are particularly sensitive to seasonal or climatic variations (such as river systems
predominantly fed by glacial melt).

Research in recent years on improving the performance of machine learning models, enhancing
their performance at scale, and incorporating prior (physical) knowledge into their training and
predictions has been both intensive and fruitful. In particular, spatial or spatiotemperal modelling
methods have made rapid recent progress, and there are many performant methods readily available
to use, and interest in applying these methods to real-world problems has been growing (Prudden
et al.,|2021}|Lalchand et al.,2022; Ekanayaka et al., 2022;|Gahungu et al.,2022;|Cuomo et al., 2022;
Berlinghieri et al., [2023} |Jiang et al.| [2024)).

Gaussian processes offer a particularly compelling tool for probabilistic regression, with a long
history of use in geospatial modelling (Rasmussen & Williams, 2006). Recent work on improving
the speed of learning in the conjugate setting (Gaussian measurement noise) has shown considerable
potential for scaling up in the low dimensional, geospatial setting (Hensman et al.,|2017; [Dutordoir
et al., 2020; |(Cunningham et al.| 2023; |Cheema & Rasmussen, 2023; Wu et al., 2022; Tran et al.,
2021; 'Wilson & Nickisch, [2015).

However, often these methods require the Gaussian process’s covariance function to be stationary—
that is, invariant to translations. However, many climatic phenomena are highly nonstationary, and
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Figure 1: Comparing predictions on 1D toy data. No training data is used within the black lines.

suitable nonstationary covariance functions have not been well-studied (Lalchand et al.| 2022; [Prud-
den et al., 2021).

When stationary models are applied to highly non-stationary data, they tend to fail in one of two
ways. Either they fit the low frequency trends, and ignore the high frequency parts (Figure [I), or
they learn globally low lengthscales to fit the high frequency part, and suffer from rapid reversion
to the prior in regions of missing data (Figure [2). Both failure modes lead to problematic poor
predictions.

High performing non-stationary GP models exist, but are computationally expensive to train. In
this work we propose a GP prior with independent wavelet components. This provides a non-
stationary prior, which also has the noteworthy property that fine-scaled behaviour is independent
of coarse-scaled behaviour, common in climatic systems (Prudden et al 2021). Additionally, we
provide an efficient learning algorithm comparable to those for stationary covariance functions. The
performance approaches that of state of the art non-stationary GPs, but with far better scalability.

2 GAUSSIAN PROCESS REGRESSION

The conjugate setting for GP regression is the generative model
Yn = f(@n) +opnn € {l: N} f~GP(0,k) (1)

where k : RP x RP — R is a (positive definite, symmetric) covariance function or kernel, y,,, p,, €
R,0c € Ryp, 2 € RP, and each p,, has an independent standard normal distribution.



The posterior p(f|z1.n, y1.n) and marginal likelihood p(y1.n ) are Gaussian and available in closed
form (Rasmussen & Williams| 2006). The latter is a principled objective for optimising o and
the kernel’s parameters using gradient-based iterative optimisation, but each marginal likelihood
evaluation incurs O(IN'3) cost due to inversion of the data covariance matrix, which quickly become
prohibitive.

Approximate methods such as sparse GP regression (Titsias, [2009} |[Lazaro-Gredilla & Figueiras-
Vidall, [2009)) replace the data with a surrogate set of M inducing features, where typically M < N
without significant loss of performance (Burt et al.,2020b). The training objective is
1
log N (y]0, KKy Kuy + 021) — 5o—-2tr(Kff - K

u

Kot Ku) )

wherein Kj; is the covariance matrix of f evaluated at the training inputs, K, is the covariance
of the inducing features, and K is the covariance between the two. By standard manipulations,

the expensive log determinant and inverse of the N x N matrix (KK ! Kyuj + 0)~" can be
rearranged to those of the M x M matrices K, and (K, + 0’2KufK Jf)*l. Then the dominant
cost is O(N M?) associated with calculating K ,; K Jf

When N is very large, this O(INM?) cost per loss function evaluation remains prohibitively ex-
pensive. Most strategies for scaling GPs further revolve around mini-batching the data and using a
stochastic optimiser (Hensman et al.,|2015).

However, recently, authors have proposed precomputable methods, where K; K, “Tf does not depend
on the parameters, and so does not need to be updated during optimisation. This reduces the com-
putational cost to O(N + M3) in general-where the N is for calculating tr(K7;) and the M for
the inverse and log determinant (Hensman et al.| [2017; [Dutordoir et al., 2020; Burt et al., [2020a;
Cunningham et al.l 2023 [Cheema & Rasmussen, [2023)). All of these works have been limited to
stationary priors, where k is translation invariant, and low dimensional settings. The advantage of
these methods is that each optimisation step becomes cheap, without mini-batching, leading to faster
optimisation overall.

Non-stationary GPs are less well-explored, but usually involve a hierarchical construction (Heinonen
et al.l 2016)). The state of the art solutions are Gibbs’ kernel-using a GP to model spatial variations
in the lengthscale of a standard stationary kernel (Gibbs, |1998; [Paciorek & Schervish, 2003), and
deep GPs—using GPs to warp the input of a standard stationary GP (Damianou & Lawrencel 2013
Salimbeni & Deisenroth, 2017). Both of these are challenging and computationally expensive to
train, though we find that Gibbs’ kernel in particular performs well for sufficiently small datasets.
We seek to provide a more scalable alternative to these methods.

3 MULTIRESOLUTION (WAVELET) GAUSSIAN PROCESSES

Discrete wavelets {w;s};ecz ¢ez form an orthonormal basis of L?*(R). These have been used to
preprocess data for GP modelling (Ferkous et al.| 2021)); here we will use them to construct the GP.
Wavelets at scale j have width scaled by 277; the second index is a shift by integer multiples of 277,
The span of coarser wavelets of scale less than ¢, say, has an orthonormal basis given by the scaling
function {v,¢ }scz (Mallat, 2009). We can define a suitable covariance function by

k(z,2") = Z v (z)v,e(z") + Z Z Biewje(x)wje(z") 3)
¢ j= ¢

which implies that the scale components of f (the inner product ( f, w;¢)) are independent. Then we
define the inducing features by computing the normalised inner product

wjre = (fywjri,0) /Byt €]

for j/ > 0, and replacing w, 8 with v, a at j* = 0. We use a finite range of ¢ which covers the region
with training data. Then the elements of K are calculated by applying the same inner product to
k. We focus on j' > 0; the case for 7/ = 0 can be calculated with straightforward adaptations. We
index the features, and the matrices K, K., with the tuple (j’, ).

[Kuf](j’,é)m = <k('7xn)7wj/+L,€>/ﬁj’+L = wj/+L,€(xn) (5)



Table 1: Precipitation evaluation results: mean and standard error over five runs

TEST STATIONARY DEEP GP GIBBS’ WAVELET-HAAR WAVELET-DB4
Uniform RMSE 21.19(0.87)  58.09 (1.91) 23.52(1.33)  26.03(0.72) 22.27 (0.78)
NLPD 4.484(0.04)  5.491(0.04) 4.07(0.016) 4.60 (0.02) 4.47 (0.03)
Patch RMSE 21.38(0.00)  49.64 (0.05) 7.606 (0.135) 18.15 (0.88) 8.287 (0.282)
NLPD 4.69 (0.000)  5.34(0.001) 3.734(0.043) 4.430 (0.025) 4.212 (0.013)

It contains only point evaluations of the wavelet and scaling functions, so does not depend on the
parameters. This is the key property which ensures the cost is reduced to O(N + M?). Similarly,
the elements of K, are calculated by an additional inner product.

(Kuul 7,0, ey = (B %)s Wi g0) [ Bjraos Wi 000) | By 40 (6)
= Wy, 0, Wity ) [ Bjrrier = 00— o—er [ Bjrgure (7

Additionally, the matrix to be inverted is sparse, since only wavelets whose support overlap are
correlated, similarly to the method of (Cunningham et al.| (2023)).

It remains to select the coefficient o, 5. We want to localise fine-scaled behaviour, so that we avoid
smoothing out high frequency phenomena (Figure|[I) or learning excessively low global lengthscales
(Figure . We set iy = 1/2, and set 3 to be the sum of a global component and spatially localised
(in ¢) components, all decaying with j at learnable rates; see the appendix for precise expressions.
We use two different wavelets: Haar, and the smoother Daubechies-4 (db4).

4 EXPERIMENTAL RESULTS

The failure mode of stationary models is clearest when the data contains regions of low and high
frequency data, but a large low frequency region has no training data. We construct these patch
tests with toy synthetic data (Figure|[I)) and with real world, highly non-stationary precipitation data
(Figure 2] and Table[I)). We also test the performance of uniformly randomly selected test points in
the real-world case (Table[T). We do not expect to achieve as strong a performance as Gibbs kernel,
since we are using a much simpler model: we aim to significantly improve on the stationary case,
with far better computational scaling than with Gibbs’ kernel. Further experimental details are in
the appendix.

The toy example of Figure [I] shows how stationary models can end up ignoring high frequency
behaviour, whereas non-stationary models can match the variable behaviour. In the smooth region
without training data, multiresolution GPs suffer from some prior reversion, but a suitable choice of
wavelet considerably improves performance.

On real-world precipitation data (Figure[2]and Table[I), the stationary model suffers from significant
prior reversion when in the patch setting, due to learning a low lengthscale. The multiresolution
models suffer to a far lesser extent, and are more competitive with the state-of-the-art Gibbs” model.

Notably, the db4 model performs comparably well to the stationary model in the uniform case, but
copes much better with the patch test, showing that this model is a significant improvement on the
stationary setting.

5 CONCLUSIONS

We have introduces a novel GP model based on discrete wavelets, with an efficient inference algo-
rithm. Empirically, when the wavelet is carefully chosen, this model performs far more robustly than
standard stationary covariance functions on non-stationary data widespread in climate modelling ap-
plications. However, there is significant scope for further improvements and closing the gap with
more expensive non-stationary kernels, for example by changing the form of the coefficients.
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A APPENDIX

A.1 COEFFICIENTS

For any master pair of scaling function v and wavelet function w, let

- ([ —27¢
2-J

so that larger values of j represent finer scaled features. Let ¢ be the canonical scale, and define the

covariance function according to

wie(w) = VI (z - 2”) ©)

k(z,a') =Y awe(@)ve) + )Y Biewje()w(a) (10)
¢ j=t ¢

so that finer scaled behaviour than the canonical scale are independent. The definition of the co-
variance function is completed by specifying a functional form for «, 5. For an almost-stationary
version, consider

ap =271 (11)
9—(1+ao)

Bje = m27(1+a0)(jﬂ+2) (12)

where ag > 0 is a parameter. The exponent is designed so that 5 decays as j increases, and the
constant is to normalise so that vy + > y Bj¢ = 1. Note that the sum is convergent for all ag > 0. If
the wavelets have disjoint support (as with the Haar wavelet), then this sum is exactly k(x, z); more
generally, the calculation for k(z, x) is more complex, but fixing the value of this sum means that a
controls only the coarse-scaledness of the covariance function, and not the variance.

The issue with this first covariance function is that it does not allow for learning localised fine-scaled
regions. An alternative form for (3 is

1 9l+ao _ 1 ) Q 9l4ao _ 1 . (27T —cq
S e P S R [C RRES) 2 a2 "
bie=7 | o 2 +2bq ra) 2 a2 )
o
(13)

Q 7(&*17%)2
Zjg=2 |14 b2 1 (14)

q=1

which has the capacity to add extra fine scaled terms — if a;, > ao then we have additional fine
scaled behaviour within a few multiples of s, of ¢,. The normalisation terms are chosen so that
oy + Zj Bje¢ =~ 1, so that the local variance is approximately constant.

To extend to higher dimensions, we construct the kernel and the features by taking a product over
dimensions (tensor product).

A.2 ADDITIONAL EXPERIMENTAL DETAILS

The toy data is generated by sampling from a GP with a squared exponential kernel with lengthscale
0.2, with the input warped through a piecewise linear function defined by first normalising the range
of the inputs to [0, 1], then

xzc/a r<a
¥=Rc+(@x—a)(d—c)/(b—a) a<z<b (15)
d+(x—b)x(1—-d)/(1—-b) x>b
for which we use ¢ = 0.1,b = 0.9,¢ = 0.55,d = 0.65. We apply Gaussian measurement noise

with variance 0.05. To generate the train/test split, we generated 180 regularly spaced points, and
withheld those in [—4, —3] as test points.



For the stationary model, we used a squared exponential kernel, and used SGPR with as many
inducing points as training points, initialised at the training points (which should recover exact
regression).

For Gibbs’ covariance function, we used the same number of inducing points, and these also were
also the points for which we estimated the maximum a posteriori values of the lengthscale process.
The log lengthscale was modelled with a GP with squared exponential kernel with GPyTorch default
parameters, and with zero mean—that is, the log lengthscale mean is zero, so the lengthscale mean is
1.

For the multiresolution GPs, we used a canonical scale of -1, and one component. We set ¢ at each
depth to cover shifts that reached a certain distance from the origin. For the Haar wavelet, we used
10, and for db4 we used 20 (since it is a wider wavelet, so wavelet features centred further away
from the data are still correlated with the data). The finest scale we used was j' = 7.

For the real world data, we used a similar configuration, with the following differences.

For the stationary model, we used a Matérn-5/2 kernel, and used IFF (Cheema & Rasmussen, [2023)
with 5700 frequencies.

For the multiresolution covariance functions, we set the width for db4 by padding the width of the
data by 5 on each side; for Haar we just used the width of the data. We used a maximum scale of 5,
and used three components. For the Haar wavelet, we tried to improve the mean fit by reducing the
canonical scale to -3.

For Gibbs’ kernel we set the log lengthscale’s prior mean to log 0.3 and its lengthscale to 1.5, based
on best performance over multiple possible settings. We used 1000 inducing points.

For the deep GP, we used a standard setup from GPflux, with three layers and 3000 inducing points.

For each model, we tried a number of inducing points or frequencies, or a number of maximum
scales with multiresolution kernels, and reported the best result.

Across both sets of experiments, we used Adam with 10000 iterations and a learning rate of 0.01 for
Gibbs’ and the deep GP. Otherwise we used L-BFGS-B.

The precipitation dataset is modelled precipitation normals in mm in the contiguous United States for
the month preceding 1 January 2021. It is publicly available with further documentation at https:
//water.weather.gov/precip/download.php, though note the data at the source is in
inches.
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Figure 2: Predictive distribution for the patch test.
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