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ABSTRACT

The ocean, absorbing about 25% of anthropogenic CO- emissions, plays a cru-
cial role in mitigating climate change. However, the delayed (by one year) tra-
ditional estimates of ocean-atmosphere C'O5 flux hinder timely understanding
and response to the global carbon cycle’s dynamics. Addressing this challenge,
we introduce Carbon Monitor Ocean (CMO-NRT), a pioneering dataset provid-
ing near-real-time, monthly gridded estimates of global surface ocean fugacity of
COs (fC'O2) and ocean-atmosphere C'O flux from January 2022 to July 2023.
This dataset marks a significant advancement by updating the global carbon bud-
get’s estimates through a fusion of data from 10 Global Ocean Biogeochemical
Models (GOBMs) and 8 data products into a near-real-time analysis framework.
By harnessing the power of Convolutional Neural Networks (CNNs) and semi-
supervised learning techniques, we decode the complex nonlinear relationships
between model or product estimates and observed environmental predictors. The
predictive models, both for GOBM and data products, exhibit exceptional accu-
racy, with root mean square errors (RMSEs) maintaining below the 5% threshold.
This advancement supports more effective climate change mitigation efforts by
providing scientists and policymakers with timely and accurate data.

1 INTRODUCTION

The ocean is a pivotal component in the Earth’s climate system, acting as a major sink for anthro-
pogenic heat and carbon dioxide (CO2). This crucial role underscores the necessity for timely and
accurate estimates of the global ocean carbon sink to inform climate change mitigation efforts and
support the global stocktake process under the Paris Climate Agreement. Traditionally, the annual
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Global Carbon Budget report has provided estimates of the global ocean carbon sink, yet these
figures are historically delayed by approximately one year Friedlingstein et al.| (2022) due to com-
putational and data gathering constraints. This latency hinders the timely assessment and response to
the changing state of global carbon sinks, emphasizing the need for more immediate data solutions.

In response to this need, numerous methodologies have been developed, utilizing both in situ mea-
surements and global ocean biogeochemical models (GOBMs) to estimate surface ocean fugacity
of CO4 (fCOy), surface ocean partial pressure of COs (pC'O5) and air-sea C'O, flux. The Surface
Ocean C'O; Atlas (www . socat .info) (SOCAT), a community-led database, has played a central
role by providing a comprehensive repository of quality-controlled surface ocean fC'Oy measure-
ments. These data, spanning from 1957 to 2022 in its latest update Bakker et al.|(2016), form
the backbone of observation-based products that estimate pC'O, across the globe. These products
leverage sparse pC'O observations from SOCAT, applying multivariate linear regression or machine
learning algorithms alongside observations of related variables to estimate pC'O, at any given loca-
tion and times (Landschiitzer et al., 2016; Rodenbeck et al.| 2022; (Chau et al., 2022} |Gloege et al.}
2022; Watson et al., [2020; Zeng et al., 2014; [lida et al., |2021}; |Gregor & Gruber, 2021)). Parallelly,
GOBMs offer a holistic simulation of the ocean’s carbonate system by integrating its physical, bio-
logical, and chemical dynamicsy (Wright et al.l 2021} |Schwinger et al., [2016; [Lacroix et al., 2021}
Berthet et al [2019; [Hauck et al} [2020; [Liao et al.| [2020; Doney et al.,|2009; |Aumont et al.| 2015
Nakano et al., 201 I} [Urakawa et al., |2020; |Long et al.,2021)). Though these models deliver extensive
insights into the ocean’s carbon cycle, their utility is constrained by computational demands and the
inherent delay in SOCAT data updates, culminating in a significant latency in current global ocean
carbon sink estimates.

To bridge this gap, we introduce Carbon Monitor Ocean (CMO-NRT), a dataset providing near-real-
time, monthly gridded global surface ocean fC'O2 and ocean-atmosphere C'O5 flux data from Jan-
uary 2022 to July 2023. CMO-NRT represents a paradigm shift in the monitoring of oceanic carbon
by employing a deep learning approach that amalgamates temporal, spatial, and environmental vari-
ables, offering a timely alternative to the delayed updates characteristic of existing methods. This
dataset not only addresses the critical need for near-real-time data but also showcases the potential of
advanced computational techniques to enhance our understanding of global biogeochemical cycles.
This paper details the development and validation of CMO-NRT, illustrating its methodology, data
integration processes, and the implications of its findings for global carbon monitoring efforts.

2 DATA AND METHODS

Carbon Monitor Ocean (CMO—-NRT) utilizes advanced deep learning methods to build models that
connects the output of GOBMs or ocean data products with relevant environmental variable obser-
vations. We then use CMO—-NRT to extend the monthly gridded global surface ocean fCOs and
ocean-atmosphere C'O5 flux estimates from each of the 10 GOBMs and 8 data products used in the
Global Carbon Budget 2022, from January 2022 to July 2023. A pipeline of CMO-NRT is shown in
Figure|l] Below we describe the calculation process in detail.

2.1 DATA SOURCES AND PRE-PROCESSING

2.1.1 GLOBAL OCEAN BIOGEOCHEMICAL MODELS AND OBSERVATION-BASED DATA
PRODUCTS

We utilize monthly data until the end of 2021 from ten GOBMs and eight data products contributing
to the Global Carbon Budget 2022 (Friedlingstein et al.;,|2022; Hauck et al.,2022). Each GOBM, de-
tailed in Table[I] is driven by meteorological reanalysis and atmospheric CO2 levels, encapsulating
physical, chemical, and biological influences on surface ocean pCO?2 through a system of intercon-
nected differential equations. Each data product is based on multivariate linear regression or
machine learning techniques correlating SOCAT observational data with relevant variable observa-
tions. The fC'Os output from each GOBM or data product is provided at a monthly resolution of
1° x 1°.
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Figure 1: Schematic overview of the methodology and data sources for Carbon Monitor Ocean
(CMO-NRT).

2.1.2 OBSERVED PREDICTORS

Our predictive variables include biological, chemical, and physical factors linked to f CO2 fluctua-
tions. These factors are SST, ICE, SSS, xC02, MLD, SSH, chl a, SLP, and wind speed. These
variables, detailed in Table 2] are bilinearly interpolated from their original grid to a 1° x 1°
monthly resolution to align with our fCO5 targets. Given that the xC'O5 data is only available until
the end of 2022, we use a LightGBM model (Ke et al., 2017) to correlate year, month, latitude,
longitude, mean atmospheric C'O, data and xC'O5 , enabling near-real-time xC'O5 data. Data from
1979-2021 is split into training and validation datasets at an 8:2 ratio. Early stopping with Light-
GBM is implemented, tested on 2022 data, yielding a test RMSE of 1.74, approximately a 0.5%
prediction error.

2.2 DEEP LEARNING METHOD

Our study devised a deep learning approach tailored for near-real-time estimation of monthly grid-
ded oceanic carbon fluxes, depicted in Figure[I] Integrating inputs of temporal, spatial, and envi-
ronmental factors, we used GOBM or ocean data product outputs as prediction targets, transforming
each dataset into a 180x360 grid format. For computational efficiency, all environmental factors
were subdivided into 18x18 patches.

Recognizing the pivotal influence of surrounding conditions on oceanic carbon absorption, and the
proficiency of Convolutional Neural Networks (CNNs) in integrating peripheral data, our model
comprises multiple stacked CNN and Linear layers. This allows the capture of both linear and
non-linear data relationships. To enhance the model’s stability, classic semi-supervised approach ,
Pseudo-labeling, is employed. For data with labels, the Root Mean Square Error(RMSE) between
labels and model predictions was calculated, serving as the supervised loss, L. For unlabeled data
points, the RMSE between these pseudo-labels and model predictions was calculated as unsupervised
loss L,,. The final loss of the model is determined by the weighted average of both supervised and
unsupervised losses wL, + Ls.

To bolster model robustness, we adopted a KFold strategy, partitioning the training data into five
subsets. We iteratively used four subsets for training and one for validation, generating five models.
Each model yielded a set of predictions for the test data, with the final prediction being the average
of all five models’ outputs. Detailed model information is provided in the Appendix
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Figure 2: Monthly fC' Oy (A) and air-sea CO5 flux (positive upward) (B) average of 10 GOBMs
and 8 data products over 1990-2021 from Global Carbon Budget 2022 (black lines) and 2022-July
2023 (near-real-time predictions, red lines) from Carbon Monitor Ocean (CMO-NRT). Grey shaded
areas represent the range of estimations from 10 GOBMs and 8 data products. Mean fC'O4 (C) and
air-sea C'O3 flux (D) over August 2022-July 2023 estimated from CMO-NRT.

Figure [2|displays the monthly oceanic fCOs and air-sea C'O5 flux from 1990 through July 2023,
alongside their corresponding gridded data for the period of August 2022 to July 2023 as estimated
by CMO-NRT. More details of output data can be found at Appendix

2.3 CALCULATIONS OF PCO2 AND AIR-SEA CO2 FLUX

While our deep learning model enables the near-real-time prediction of fCO-, a series of further
calculations are necessary to determine the amount of C'O4 absorbed by the ocean, resulting in the
CO- flux. Due to space constraints, the detailed calculation process for this part can be found in

Appendix

3 TECHNICAL VALIDATION

To evaluate CMO-NRT’s near-real-time forecasts, we trained models using data from 2000-2019,
excluding the most recent two years’ data from 10 GOBMs and 8 data products, which served as the
test set. Our models achieved an RMSE of less than 5% across all targets, with most data products
registering around 2% RMSE loss. For more detailed information, please refer to Table [3] We then
analyzed the results from three perspectives: correlation, global quantity, and spatial distribution.

* The correlation between CMO-NRT predictions and original outputs for the 10 GOBMs
and 8 data products during 2020-2021, was generally strong with most R2 values above 0.9.
Scatter plots indicated more stable model performance with GOBMs due to less deviation
from the fit line.

* Analysis of global fCO2 monthly variations revealed a high agreement in seasonality across
GOBM s and data products (Figures ] and [5). Our estimates were slightly higher, but
most differences were under 3 patm. Global aggregate comparisons demonstrated superior
performance by GOBMs with most R2 values exceeding 0.85.

* Evaluation of the spatial fCO2 distribution patterns revealed consistency between CMO-
NRT predictions and original outputs across latitudes (Figures [6] and [7), with most dis-
crepancies under 20 patm. Larger errors were observed in extreme fCO2 regions, such
as the equatorial Pacific, Arctic Ocean, and areas with missing historical data. Monthly
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mean fCO2 values, calculated separately across the 10 GOBMs and 8 data products during
2020-2021, showed high consistency with original results, with generally under 10 patm
discrepancies. Seasonal variations revealed higher original values from GOBMs in the
Arctic region during summer, while data product performance was more uniform across
months.

4 CONCLUSION

Our study, CMO-NRT, introduces a deep learning approach tailored for near-real-time estimation of
oceanic carbon sinks, with a minimal delay of 1-2 months. This represents the first global effort for
near-real-time oceanic carbon sink estimations. Notably, our method achieves an approximate 2%
RMSE prediction for most GOBMs and data products, underscoring its robustness and accuracy.
The development of the CMO-NRT dataset effectively bridges the gap between the immediacy of
data and the requirement for swift analysis, thereby becoming an invaluable tool for climate change
mitigation. Despite significant strides in oceanic carbon sink estimations, the complex evaluation
of terrestrial carbon sinks, closely linked with human activities, persists as a lagging issue requiring
urgent attention. Drawing on our experience in oceanic explorations, our work could serve as a
reference for terrestrial carbon sink predictions, thereby advancing climate change solutions. As the
urgency for climate change solutions escalates, our work offers a crucial tool for timely, informed
decision-making, playing a central role in global climate change management.
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Table 2: Sources of input data sets.

Variable Abbreviation | Data Product Resolution
Sea Surface .
Temperature SST NOAA: OISSTHuang et al.|(2021) ;ggiﬁjg%f’?} dd‘j}}y’ itude)
Sea Ice Fraction ICE atitude™longitude

.. . : 1959/01-2023/07,
Sea Surface Salinity | SSS Met Office: EN4|Good et al.|{(2013) monthly, 173%360
Atmospheric COs CO NOAA: GreenhouseGas Marine Boundary | 1979/01-2022/12,
mixing ratio T Layer Reference|Lan et al.|(2023) weekly, 180*1
Mixed Layer Depth | MLD ECMWF: ORASS B 1959/01-2023/08,
Sea Surface Height | SSH Copernicus Climate Change Service|(2021) | monthly, 1021%1442

i - — 1997/09-2023/09,

Chlorophyll-a Chl a ESA: GlobColour Maritorena et al.|{(2010) monthly, 180%360
Sea Level Pressure SLP . : 1959/01-2023/08,
Wind Speed Wind ECMWF: ERAS [Hersbach H. et al.|(2023) monthly, 1021%1442
Year, month, longitude and latitude

A DATA

Table 1: Global ocean biogeochemical models and ocean data products used in the Global Carbon
Budget 2022 (Friedlingstein et al., 2022; Hauck et al., 2022)

Type Datasets Data information
NEMO-PlankTOM 12 [Wright et al.[(2021)
MICOM-HAMOCC (NorESM-OCv1.2)|Schwinger et al.|(2016)
MPIOM-HAMOCCS6 |Lacroix et al.[(2021) - B
NEMO3.6-PISCESv2-gas (CNRM) Berthet et al.|(2019)

Global ocean FESOM-2.1-REcoM?2 [Hauck et al.|(2020) B

Egﬁgf:hem‘my MOMG6-COBALT (Princeton) [Liao et al.|(2020)
CESM-ETHZ Doney et al.|(2009)
NEMO-PISCES (IPSL)|Aumont et al.|(2015) Surface ocean
MRI-ESM2-1 (Nakano et al.|[2011{|Urakawa et al.|[2020) fugacity of COo,
CESM2|Long et al.[(2021) ) ) 1959/01-2021/12,
MPI-SOMFEN |Landschiitzer et al.[(2016) monthly, 180*360
Jena-MLS|Rodenbeck et al.[(2022)
CMEMS-LSCE-FFNNv2|Chau et al.|(2022)

Ocean data LDEO-HPD |Gloege et al.|(2022)

products UOEx-Watson |Watson et al.|[(2020)

NIES-NN|Zeng et al.[(2014)
JMA-MLR|lida et al.[(2021)
OS-ETHZ-GRaCER |Gregor & Gruber|(2021)

B METHODS

The framework of the model is illustrated in Figure [3] The data points with label values were
denoted as D;, while those with no labels were termed D,,. In the initial phase, the model was
trained exclusively on D; data points. The RMSEbetween labels and predictions was calculated,
serving as the supervised loss, L, . Simultaneously, we aimed to ensure stability in predictions even
on data without labels. To this end, we employed a classic semi-supervised approach known as
pseudo-labeling. Predictions were made by randomly removing 10% of features, which were then
used as pseudo-labels. The results predicted by eliminating 30% of features randomly from the input
were used as predictions. The RMSE between these pseudo-labels and predictions was calculated
as unsupervised loss, L,. The model was subsequently updated through backward propagation,
utilizing the weighted sum of wL, + Ls as the model’s loss. This method has been shown to
enhance the model’s stability.

Our model’s detail architecture, as illustrated in the bottom right corner of Figure[3] is an integration
of multi-layered CNN and linear models. The model has been meticulously structured to process
our input data efficiently and generate accurate predictions.
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Figure 3: Framework of our methodology.

The input layer is designed to align with the format of our data, preserving a dimension of
18x18x13. This dimensionality accounts for the width, height, and depth (which corresponds
to the thirteen input factors considered in this study) and is consistently upheld across all CNN and
linear layers. Within the multi-layered CNN models, the hidden layers are configured with dimen-
sions set at 13, 64 and 64. These layers are intentionally designed to automatically and adaptively
identify and learn spatial hierarchies from the data. Following the CNN layers, the linear model
layers, structured with dimensions of 64, 64, and 1, perform mathematical operations that linearly
transform the feature space, aiding in the generation of effective predictions. The architecture of
the model culminates in an output layer with a dimension of 1, indicating that it yields a single out-
put value. This value represents our final predicted value for oceanic carbon fC'O5. The network
comprises several layers, including the Convolutional Layer, Rectified Linear Unit (ReLU) Layer,
and Fully Connected Layer. These layers work in harmony, each contributing to the processing and
transformation of input data, ultimately leading to the output prediction.

C CALCULATIONS OF pC'Oy AND AIR-SEA C'O, FLUX

The pC' O, is calculated by the following equation:

-1
pCOy = FCOy X exp <_ part ?%1?) ) .

where P is the atmospheric surface pressure from ECMWF Reanalysis version 5
(2023), T is the sea surface temperature(SST) in Kelvin from National Oceanic and Atmo-
spheric Administration (NOAA) optimally interpolated SST (OISST) [Huang et al|(2021), B and &
are virial coefficients from Weiss (1974), R is the gas constant Dickson et al.|(2007).

The air—sea C'O5 flux is calculated here by the standard bulk equation:

Fco, = ky X Sco, % (1 = fiee) X (pCOF™MON — pCOZ) )

which parameterizes the air-sea CO; flux Fco, as a function of the gas transfer velocity (k.,), CO2
solubility (Sco,), ice fraction (fi..), and partial pressure of CO5 in moist air (pCOF™ ™) and
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surface ocean (pC'O5°*"). Solubility is calculated following Weiss Weiss|(1974) and partial pressure
of moist air (pC OF™ ™) i calculated following Equation,

pCOF™™™ = £COy X (Pum — pH20) 3)

where xCOs is the dry air mixing ratio of atmospheric C'O5 from NOAA Greenhouse Gas Marine
Boundary Layer Reference |[Lan et al.|(2023), P,;,, is the total atmospheric pressure from ECMWF
Reanalysis version 5 [Hersbach H. et al.| (2023)), and pH»O is the saturation vapor pressure [Dickson
et al.| (2007). We use the Wanninkhof Wanninkhof]| (1992) formulation for the gas transfer velocity:

Sc —0.5
ky = kw,scaled x u? x (66 ) 4

which parameterizes k,, as a function of wind speed squared (u?) and the Schmidt number (S..).
k. 1is scaled by a factor of k, scqieq for each wind product to match the invasion of bomb as of
1994) (Sweeney et al., 2007; Fay & McKinleyl 2021)). The wind product is from ECMWF Reanal-
ysis version 5 [Hersbach H. et al.|(2023).

D RESULT

The CMO-NRT dataset, formatted in Network Common Data Form (NetCDF), provides monthly
global oceanic surface fCOy and air-sea C'O2 flux data. This dataset spans from January 2022
through July 2023 and is structured into a 1° x 1° grid. It includes three dimensions and two vari-
ables. The dimensions are as follows:

* Time: Monthly data, from January 2022 to July 2023.
* Latitude (lat): Ranges from -90° to 90° North.

* Longitude (lon): Spans from -180° to 180° East.

* Product: Involves 10 GOBMs and 8 data products.

The two variables covered are:

* sfCO3: This represents the surface ocean fC'O,, quantified in units of uatm. It is mea-
sured across 18 products, 19 time points, and a grid of 180 latitudes by 360 longitudes.

* fgCO2: This indicates the flux density of total air-sea C'Oy exchange, expressed in
gC/m?/day with a positive value indicating an upward direction. Similar to sfCOs, it is
measured across the same dimensions. As of the time of this writing, the dataset includes
data up to July 2023.

Figure [2]displays the monthly oceanic fCOs and air-sea C'O5 flux from 1990 through July 2023,
alongside their corresponding gridded data for the period of August 2022 to July 2023 as estimated
by CMO-NRT.

E TECHNICAL VALIDATION

* Overall, the predictions for both GOBMs and data products demonstrated a strong perfor-
mance, with most having an R2 value above 0.9. Scatter plot comparisons reveal that, in
data products, there are occasional points where predictions significantly deviate from the
fit line. In contrast, for GOBMs, most points cluster close to the fit line, indicating more
stable performance of the model with GOBMs.

* Global quantity: We further analyzed the monthly variations of global f{CO2, comparing
CMO-NRT predictions with original outputs during 2020-2021 as shown in Figures ff] and
Bl The results exhibit a high degree of agreement in terms of seasonality across both
GOBMs and data products. Generally, our estimated values were slightly higher than the
original values, with most differences being less than 3 patm. In terms of global aggregate
comparisons, GOBMs demonstrated superior performance, with most R2 values exceeding
0.85.
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Figure 4: Comparison of global average monthly fCO2 between CMO-NRT predictions and original
outputs for each of the 10 GOBMs during 2020-2021. The red lines are the predicted results from
CMO-NRT. The black lines are the original results from GOBMs. The dashed grey lines are the
average results of 10 GOBMs.

* Spatial distribution:We evaluate the spatial patterns of mean fCO2 of the CMO-NRT pre-

diction against the original output for each of the 10 GOBMs and 8 data products during
2020-2021 Figures [6land [7]. The spatial variations in fCO2 were largely consistent be-
tween the CMO-NRT predictions and the original results, with most discrepancies being
under 20 patm. The predicted values also align well with the original outputs in both trend
and magnitude across latitudes. Notably larger errors were observed in the equatorial Pa-
cific, including adjacent coastal areas near Peru and Chile to the west and northeast regions
near Indonesia and Papua New Guinea, as well as the Arctic Ocean. These errors are pri-
marily due to these regions typically exhibiting extreme maximum and minimum fCO2
values. Our model tends to perform less accurately in predicting extremes compared to
values closer to the mean, resulting in slightly poorer performance in these areas. Addi-
tionally, the MPI-SOMFFN shows lower predictive accuracy in the Arctic region, primarily
due to the high frequency of missing historical data in this area.
We also calculated the monthly mean fCO2 values by averaging them separately across the
10 GOBMs and 8 data products during 2020-2021. The spatial variation in f{CO2 showed
high consistency between the CMO-NRT predictions and the original results, with discrep-
ancies generally under 10 patm for GOBMs and data products. The predicted values align
well with the original outputs in both trend and magnitude across latitudes. Examining dif-
ferent months, we observed that in the summer months, the original values from GOBMs
in the Arctic region were significantly higher than our predictions. In contrast, the perfor-
mance of data products was more uniform across different months. Typically, the original
values from data products were lower than the predictions in the Arctic Ocean and higher
in the equatorial Pacific region.
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Figure 5: Comparison of global average monthly fCO2 between CMO-NRT predictions and original
outputs for each of the 8 data products during 2020-2021. The red lines are the predicted results from
CMO-NRT. The black lines are the original results from data products. The dashed grey lines are
the average results of 8 data products.
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Figure 6: Spatial differences between CMO-NRT predictions and original outputs for each of the 10
GOBMs during 2020-2021. The line graphs represent the values of predictions and original outputs
across latitudes.

LDEO-HPD 360 420
60N < = 0N
; 5
30N 30N
o 2 o
60's 60°s
180W  90W G SOE 180°E 1CO; (uatm)
UOEX-Watson

360 420

= 80°N
.
30°N
W ;
s a8

CMEMS-LSCE-FFNN 320 400
60N = = 60°N
§ s
| 30N
- 3, -
eS| = 60°S
wow oW O WE Te0E
JMA-MLR 360 420
N < son
s
N o
- 7] -
60's . 60's
B T T — WE 180

Jena-MLS

0's

BN 0 2 a0 40 50
1CO; (vatm)

— Predicted values.

300 450

60N
3N
o

a0's
0's

60°N
30N

30°s
60°s

6N B0°N
608 60°S
18OW  90W o WE  T0E
OSETHZ-GRaCER 360 420
.
M v o
]| R N

Figure 7: Spatial differences between CMO-NRT predictions and original outputs for each of the
8 data products during 2020-2021. The line graphs represent the values of predictions and original
outputs across latitudes.
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Table 3: Root Mean Square Error (RMSE) for Different Models

GOBM Models
NAME RMSE MEAN NRMSE
NorESM-OCv1.2 10.8 392 2.7%
CESM2 6.8 379 1.7%
MRI-ESM2-1 7.7 381 2.0%
CNRM 11.2 393 2.8%
IPSL 10.6 388 2.7%

MPIOM-HAMOCC6 15.6 393 3.9%
NEMO-PlankTOM12 13.3 386 3.4%

FESOM-2.1-REcoM2 15.1 392 3.8%
CESM-ETHZ 8.7 388 2.2%
Princeton 10.6 384 2.7%
Data Product Models
NAME RMSE MEAN NRMSE
NIES-NN 53 384 1.3%
OSETHZ-GRaCER 6.7 387 1.7%
LDEO-HPD 8.4 387 2.1%
MPI-SOMFFN 16.4 384 4.2%
Jena-MLS 15.1 384 3.9%
UOEX-Watson 16.2 390 4.1%
JIMA-MLR 99 384 2.5%
CMEMS-LSCE-FFNN 8.4 391 2.1%
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