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ABSTRACT

Energy storage devices, such as batteries, thermal energy storages, and hydrogen
systems, can help mitigate climate change by ensuring a more stable and sustain-
able power supply. To maximize the effectiveness of such energy storage, deter-
mining the appropriate charging and discharging amounts for each time period is
crucial. Reinforcement learning is preferred over traditional optimization for the
control of energy storage due to its ability to adapt to dynamic and complex en-
vironments. However, the continuous nature of charging and discharging levels
in energy storage poses limitations for discrete reinforcement learning, and time-
varying feasible charge-discharge range based on state of charge (SoC) variability
also limits the conventional continuous reinforcement learning. In this paper, we
propose a continuous reinforcement learning approach that takes into account the
time-varying feasible charge-discharge range. An additional objective function
was introduced for learning the feasible action range for each time period, sup-
plementing the objectives of training the actor for policy learning and the critic
for value learning. This actively promotes the utilization of energy storage by
preventing them from getting stuck in suboptimal states, such as continuous full
charging or discharging. This is achieved through the enforcement of the charg-
ing and discharging levels into the feasible action range. The experimental results
demonstrated that the proposed method further maximized the effectiveness of
energy storage by actively enhancing its utilization.

1 INTRODUCTION

Energy storage devices, such as batteries, thermal energy storages, and hydrogen systems, play a
pivotal role in mitigating the impact of climate change (Aneke & Wang, 2016; Jacob et al., 2023).
These storage technologies are instrumental in capturing and efficiently storing excess energy gen-
erated from renewable sources during peak production periods, such as sunny or windy days. By
doing so, they enable the strategic release of stored energy during periods of high demand or when
renewable energy production is low, thereby optimizing energy distribution and reducing reliance on
traditional fossil fuel-based power generation. It can be utilized in energy arbitrage by attempting to
charge when surplus energy is generated and energy prices are low or even negative, and conversely,
discharging during periods of energy scarcity when prices are high (Bradbury et al., 2014). The
integration of energy storage with arbitrage strategies contributes to grid stability, enhances overall
energy reliability, and fosters a more sustainable energy ecosystem. Energy storage devices are uti-
lized in various capacities, ranging from small-scale applications for households to large-scale units
for the overall grid operation, contributing to mitigating climate change (Ku et al., 2022; Inage,
2019).

To enhance the utility of energy storage devices, determining optimal charge and discharge levels
for each time period is crucial. In recent times, reinforcement learning techniques have gained
prominence over traditional optimization methods for this purpose (Cao et al., 2020; Jeong et al.,
2023). Unlike conventional optimization approaches, reinforcement learning allows for dynamic
adaptation and decision-making in response to changing conditions, enabling energy storage systems
to continuously learn and improve their performance over time. This shift towards reinforcement
learning reflects a recognition of its ability to navigate complex and dynamic environments. It offers
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a more adaptive and effective solution to optimize charging and discharging strategies for energy
storage devices across diverse temporal patterns. This transition in methodology underscores the
importance of leveraging advanced learning algorithms to maximize the operational efficiency of
energy storage systems in real-world, time-varying scenarios.

The continuous nature of energy storage device charge and discharge levels poses a challenge when
employing discrete reinforcement learning techniques such as Q-learning. These algorithms oper-
ate with a predefined set of discrete actions, e.g., fully or partially charging/discharging (Cao et al.,
2020; Rezaeimozafar et al., 2024). It limits their suitability for tasks involving continuous variables,
and thereby constraining the system’s ability to explore and optimize across a continuous range of
charge and discharge values. Consequently, the utilization of these methods may lead to suboptimal
solutions, as the algorithms cannot fully capture the intricacies of the continuous action space (Lil-
licrap et al., 2015). Due to this limitation, continuous reinforcement learning approaches are often
employed such as proximal policy optimization (PPO) (Schulman et al., 2017), to better address the
need for precise decision-making in the continuous spectrum of charge and discharge levels.

In continuous reinforcement learning, however, challenges also arise when determining charge and
discharge levels due to the dynamic nature of the state of charge (SoC) over time. The range of
feasible charge and discharge actions varies based on the evolving SoC. For example, setting actions
like charging to a negative value (e.g., complete charging to −1) and discharging to a positive value
(e.g., complete discharging to 1) results in a feasible action range of 0 to 1 when the battery is fully
charged, and −1 to 0 when the battery is fully discharged. Nevertheless, current approaches often
struggle to effectively address such time-varying action ranges. Currently, when actions fall outside
the designated range, a common solution involves charging up to the maximum SoC or discharging
up to the minimum SoC (Jeong & Kim, 2021; Kang et al., 2024). However, this approach introduces
a potential challenge wherein the SoC may become stuck in a fully charged or fully discharged state
during the learning, limiting its ability to explore within the full spectrum of SoC states. Addition-
ally, there are approaches that assign a cost or negative reward proportional to the extent by which
actions deviate outside the designated range (Lee & Choi, 2020; Zhang et al., 2023). However, there
is a potential for overly conservative learning, as the emphasis leans heavily towards actions that re-
main within the designated range. Addressing these issues is crucial for adapting to the time-varying
action ranges associated with the changing SoC over time.

In this paper, we propose a continuous reinforcement learning approach to address these challenges
in energy storage device control. The key innovation lies in augmenting the conventional objective
functions of the actor and critic with an additional supervising objective function designed to ensure
that the output actions at each time step fall within the feasible action space. In contrast to traditional
supervised learning, where the training encourages the output to approach specific values, the intro-
duced supervising objective function focuses on constraining the output within a particular range.
This inclusion is pivotal as bringing the output within the feasible action space enables the acti-
vation of charging and discharging operations in energy storage devices. This proactive approach
helps prevent the energy storage from getting stuck in suboptimal states like complete charge or
discharge, facilitating the exploration of more optimal actions. The integration of the supervising
objective function enhances the adaptability and efficiency of continuous reinforcement learning in
optimizing energy storage operations over changing states. We conducted experiments related to en-
ergy arbitrage and found that the addition of the supervising objective function effectively addressed
the challenge of the system becoming stuck in suboptimal conditions. This objective function pre-
vents the energy storage device from being trapped in states like complete charge or discharge and
promotes continual exploration for optimal energy arbitrage.

2 METHODS

In this section, we present a continuous reinforcement learning model combined with a supervising
objective function. Modern continuous reinforcement learning comprises actor and critic compo-
nents, each with distinct objective functions depending on the specific reinforcement learning algo-
rithm employed. In this paper, we adopt the proximal policy optimization (PPO) algorithm, known
for its compatibility with long short-term memory (LSTM) (Schulman et al., 2017), to address en-
ergy storage device control problems. When tackling control problems associated with energy stor-
age devices, the majority of reinforcement learning states often involve time-series data such as SoC,

2



Published as a workshop paper at ”Tackling Climate Change with Machine Learning”, ICLR 2024

LSTM

LSTM

Linear

𝑜𝑡 = (𝑥𝑡 , SoC𝑡)

Actor Critic

𝑦𝑡 = 𝜇𝜃 𝑠𝑡 , 𝑉𝜃(𝑠𝑡)

Energy 

Storage

Time-Varying

Charging

Limitation

ത𝑃𝑐,𝑡

…

Policy

Update

Policy Update

with Time-Varying 

Constraints

ത𝑃𝑐,𝑡 ≤ 𝜇𝜃 𝑠𝑡 ≤ ത𝑃𝑑,𝑡

Value

Update

Time-Varying

Discharging

Limitation

ത𝑃𝑑,𝑡

Time-Varying Error Function

ത𝑃𝑐,𝑡 ത𝑃𝑑,𝑡

Supervising

Figure 1. A framework of the proposed method.

energy generation, energy demand, and energy prices. Given this temporal nature, combining PPO
with LSTM becomes particularly advantageous. This combination facilitates effective learning and
decision-making in scenarios where the state representation is composed of sequential data.

The overall framework of the proposed method is shown in Figure 1. The input to the LSTM at
each time step is referred to as an observation because, in the context of time-series data, the value
corresponding to each time is a partially observable state. At time t, the LSTM input, denoted as ot,
comprises the SoC at time t, represented as SoCt, and other variables xt pertinent to the objectives
of energy storage device control. These additional variables may include factors such as energy
generation, demand, prices, or other relevant parameters, depending on the specific goals of energy
storage control. The past observations construct the state at time t as st = (o0, o1, · · · , ot). In
our problem, the action is the charging and discharging amount, and since the action can be known
according to changes in the SoC within the state, past actions are not separately included as the state.
With the LSTM parameters θ, the output of the LSTM consists of the actor’s output, denoted as
µθ(st), and the critic’s output, denoted as Vθ(st). Here, µθ(st) represents the mean of the Gaussian
policy, while Vθ(st) signifies the estimated value. The standard deviation of the Gaussian policy
is predetermined based on the desired level of exploration. During the training phase, action at is
sampled from the Gaussian policy, and during the actual testing phase, µθ(st) serves as the action
at (Zimmer & Weng, 2019). Based on the st and at, reward rt and the next observation ot+1 are
given from the environment.

The actor and critic objective functions in the standard PPO formulation are expressed as follows:

LPPO
actor (θ) = Et

[
min

(
Rt(θ)Ât, clip(Rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
, (1)

LPPO
critic (θ) = Et

[
(rt + γVθ(st+1)− Vθ(st))

2
]
, (2)

where Rt(θ) is the ratio of the new and old policies at time t, Ât is the estimated advantage function
at time t, ϵ is a hyperparameter determining the clipping range, and γ is a discount factor. We are
adding a supervising objective function here. Let the charging limitation at time t as P̄c,t and the
discharging limitation as P̄d,t. These limitations are determined based on the SoCt. As the SoC
varies over time, both the charging and discharging limitations also time-varying. We have defined
charging actions as negative and discharging actions as positive, resulting in P̄c,t ≤ 0 and P̄d,t ≥ 0.
The proposed supervising objective function is as follows:

LPPO
supervising(θ) = min

(
µθ(st)− P̄c,t, 0

)2
+min

(
P̄d,t − µθ(st), 0

)2
. (3)

Since µθ(st) serves as the action in the testing phase, we have set the range of µθ(st) to be between
P̄c,t and P̄d,t. This error function is similar to the mean squared error in supervised learning, with
the key distinction that the error is zero within the range of P̄c,t and P̄d,t. We finally obtain our main
objective, which is minimized at each iteration:

LPPO(θ) = LPPO
actor (θ) + C1L

PPO
critic (θ) + C2L

PPO
supervising(θ), (4)

where C1 and C2 are coefficients of the critic objective function and supervising objective function
learning, respectively.
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(a) Case 1.
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(b) Case 2.
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(c) Case 3 (proposed).

Figure 2. Charging/discharging patterns for 3 cases.

Table 1: Experiment results (30-minutes averaged).

Metric

Charging cost ($) Disharging revenue ($) Degradation cost ($) Total profit ($)

Case 1 -0.000 4.858 -0.080 4.779
Case 2 -40.039 53.245 -1.691 11.514

Case 3 (proposed) -37.493 54.085 -1.714 14.879

3 RESULTS

In this section, we evaluate the performance of the proposed method by comparing it with two
benchmark cases. Case 1 employed a conventional continuous reinforcement learning approach,
excluding the equation (3), meaning that the output actions were not restricted to be within the
feasible action space. Case 2 incorporated the equation (3) into the reward function. This approach,
proposed in (Lee & Choi, 2020), adds negative rewards if the output actions fall outside the feasible
action space, rather than explicitly learning the range of output actions. The proposed model is
designated as Case 3. We demonstrated the effectiveness of the proposed approach through energy
arbitrage experiments based on actual energy price data in 2017 U.K. wholesale market (uk2, 2017).
Accordingly, the additional variable xt becomes the energy price at time t, and the reward rt is the
total profit at time t. We take the first 2000 data points which are sampled every 30 minutes and split
the dataset into training set (1000 data points), validation set (500 data points), and test set (500 data
points) in chronological order, where the validation set was used for early stopping. We normalize
the price data between 0 and 1 by the maximum price $190.81/MWh. We simulate the proposed
method using 100MWh battery with the degradation cost of $10/MWh. At time slot t = 0, we set
SoCt = 0.5, i.e., the half stored energy. We set the minimum and maximum values of the SoC
to 0.1 and 0.9, respectively, in order to prevent battery degradation, and the battery charging and
discharging model is based on the battery equivalent circuit used in (Cao et al., 2020; Jeong et al.,
2023). We used a 2-layer LSTM architecture with 16 neurons and trained the model using the Adam
optimizer. All PPO-related parameters were adopted from values commonly used in (Schulman
et al., 2017).

Figure 2 illustrates the charging and discharging patterns for three cases. Case 1 shows a scenario
where all the initially stored energy is discharged (sold out) and no further actions are taken. This
suggests a failure in learning to manage the costs associated with charging in energy arbitrage, re-
sulting in suboptimal behavior. Case 2 demonstrates reasonable utilization of energy arbitrage, but
the proposed Case 3 engages in more active energy arbitrage. Introducing Equation (3) as a negative
reward makes the agent conservative towards reaching states of complete charge or discharge, lead-
ing to reduced utilization of the energy storage. Table 1 presents the 30-minute average of charging
cost, discharging revenue, degradation cost, and total profit for the three cases. It is evident that the
proposed Case 3 achieves the highest profit.

4 CONCLUSION

In this paper, we introduce a continuous reinforcement learning approach for energy storage control
that considers the dynamically changing feasible charge-discharge range. An additional objective

4



Published as a workshop paper at ”Tackling Climate Change with Machine Learning”, ICLR 2024

function has been incorporated to learn the feasible action range for each time period. This helps
prevent the energy storage from getting stuck in states of complete charge or discharge. Further-
more, the results indicate that supervising the output actions into the feasible action range is more
effective in enhancing energy storage utilization than imposing negative rewards when the output
actions deviate from the feasible action range. In future research, we will explore combining offline
reinforcement learning or multi-agent reinforcement learning to investigate methods for learning a
more optimized policy stably.

ACKNOWLEDGMENTS

This work was supported by the Korea Institute of Energy Technology and Planning (KETEP) and
the Ministry of Trade, Industry & Energy (MOTIE) of Korea (No. 2021202090028C).

REFERENCES

The changing price of wholesale UK electricity over more than a decade. https:
//www.ice.org.uk/knowledge-and-resources/briefing-sheet/
the-changing-price-of-wholesale-uk-electricity, 2017. [Online; accessed
30-Jan-2024].

Mathew Aneke and Meihong Wang. Energy storage technologies and real life applications–a state
of the art review. Applied Energy, 179:350–377, 2016.

Kyle Bradbury, Lincoln Pratson, and Dalia Patiño-Echeverri. Economic viability of energy storage
systems based on price arbitrage potential in real-time us electricity markets. Applied Energy,
114:512–519, 2014.

Jun Cao, Dan Harrold, Zhong Fan, Thomas Morstyn, David Healey, and Kang Li. Deep rein-
forcement learning-based energy storage arbitrage with accurate lithium-ion battery degradation
model. IEEE Transactions on Smart Grid, 11(5):4513–4521, 2020.

Shin-ichi Inage. The role of large-scale energy storage under high shares of renewable energy.
Advances in Energy Systems: The Large-scale Renewable Energy Integration Challenge, pp. 221–
243, 2019.

Rhys Jacob, Maximilian Hoffmann, Jann Michael Weinand, Jochen Linßen, Detlef Stolten, and
Michael Müller. The future role of thermal energy storage in 100% renewable electricity systems.
Renewable and Sustainable Energy Transition, 4:100059, 2023.

Jaeik Jeong and Hongseok Kim. DeepComp: Deep reinforcement learning based renewable energy
error compensable forecasting. Applied Energy, 294:116970, 2021.

Jaeik Jeong, Seung Wan Kim, and Hongseok Kim. Deep reinforcement learning based real-time
renewable energy bidding with battery control. IEEE Transactions on Energy Markets, Policy
and Regulation, 2023.

Hyuna Kang, Seunghoon Jung, Hakpyeong Kim, Jaewon Jeoung, and Taehoon Hong. Reinforce-
ment learning-based optimal scheduling model of battery energy storage system at the building
level. Renewable and Sustainable Energy Reviews, 190:114054, 2024.

Tai-Yeon Ku, Wan-Ki Park, and Hoon Choi. Energy maestro–transactive energy mechanism. In
2022 IEEE International Conference on Big Data (Big Data), pp. 6727–6729. IEEE, 2022.

Sangyoon Lee and Dae-Hyun Choi. Federated reinforcement learning for energy management of
multiple smart homes with distributed energy resources. IEEE Transactions on Industrial Infor-
matics, 18(1):488–497, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

5

https://www.ice.org.uk/knowledge-and-resources/briefing-sheet/the-changing-price-of-wholesale-uk-electricity
https://www.ice.org.uk/knowledge-and-resources/briefing-sheet/the-changing-price-of-wholesale-uk-electricity
https://www.ice.org.uk/knowledge-and-resources/briefing-sheet/the-changing-price-of-wholesale-uk-electricity


Published as a workshop paper at ”Tackling Climate Change with Machine Learning”, ICLR 2024

Mostafa Rezaeimozafar, Maeve Duffy, Rory FD Monaghan, and Enda Barrett. A hybrid heuristic-
reinforcement learning-based real-time control model for residential behind-the-meter PV-battery
systems. Applied Energy, 355:122244, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Shulei Zhang, Runda Jia, Hengxin Pan, and Yankai Cao. A safe reinforcement learning-based
charging strategy for electric vehicles in residential microgrid. Applied Energy, 348:121490,
2023.

Matthieu Zimmer and Paul Weng. Exploiting the sign of the advantage function to learn determin-
istic policies in continuous domains. arXiv preprint arXiv:1906.04556, 2019.

6


	Introduction
	Methods
	Results
	Conclusion

