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ABSTRACT

The climate penalty measures the effects of a changing climate on air quality
due to the interaction of pollution with climate factors, independently of future
changes in emissions. This work introduces a statistical framework for estimating
the climate penalty on soot pollution (PM2.5), which has been linked to respiratory
and cardiovascular diseases and premature mortality. The framework evaluates the
disparities in future PM2.5 exposure across racial/ethnic and income groups—an
important step towards informing mitigation public health policy and promoting
environmental equity in addressing the effects of climate change. The proposed
methodology aims to improve existing statistical-based methods for estimating the
climate penalty using an expressive and scalable predictive model based on spatial
deep learning with spatiotemporal trend estimation. The proposed approach will
(1) use higher-resolution climate inputs, which current statistical approaches to es-
timate the climate penalty cannot accommodate; (2) integrate additional predictive
data sources such as demographics, geology, and land use; (3) consider regional
dependencies and synoptic weather patterns influencing PM2.5, deconvolving the
effects of climate change from increasing air quality regulations and other sources
of unmeasured spatial heterogeneity.

1 INTRODUCTION

Air pollution is one of the leading mortality risk factors worldwide. In 2019, up to 6.7 million deaths
worldwide were attributed to cardiovascular diseases likely caused by air pollution exposure (Mur-
ray et al., 2020; Brauer et al., 2021). Particularly concerning is soot pollution from fine particulate
matter with a diameter less than 2.5 µm (PM2.5). These small particles can travel deep into the
lungs, and some may even enter the bloodstream (EPA, 2023). Several studies have found signifi-
cant evidence that PM2.5 is linked to respiratory and cardiovascular disease (Brook et al., 2010) and
premature mortality (Wu et al., 2020; Pelucchi et al., 2009; Laden et al., 2006). Due to its significant
public health and economic consequences (Wu et al., 2020), it is crucial to understand how PM2.5

will be affected by climate change, which is believed to increase air pollution concentrations (East
et al., 2022). This effect is known as the climate penalty, and it measures the effects of a changing
climate on PM2.5 concentration due to the interaction of pollution with climate factors, indepen-
dently of future changes in emission levels (Fiore et al., 2022). Here we introduce a novel statistical
framework (summarized in Fig. 1) for estimating the climate penalty allowing us to produce higher-
resolution predictions and use more predictors than existing statistical approaches. Our scientific
aim is to predict the climate penalty on PM2.5 under a constellation of climate change scenarios and
use these projections to evaluate the disparities in future PM2.5 exposure across racial/ethnic and

1



Published as a workshop paper at ”Tackling Climate Change with Machine Learning”, ICLR 2023

Figure 1: Proposed workflow.

income groups. The findings have the potential to inform mitigation policy aiming to protect public
health and promote environmental equity when addressing the effects of climate change.

Accurately characterizing the climate penalty is challenging due to the complex interactions between
atmospheric patterns and PM2.5 (Tai et al., 2010). For instance, higher temperatures increase PM2.5

due to increasing oxidation rates and fire emissions. By contrast, the effect of relative humidity and
cloud cover may vary by different PM2.5 components and geographic locations (Tai et al., 2010;
Koch et al., 2003). PM2.5 levels are also affected by regional or synoptic weather patterns occurring
at a larger spatial scale (Shen et al., 2015; Leung et al., 2018). Thishan Dharshana et al. (2010)
estimate that synoptic systems derived from wind patterns such as cold frontal passages and maritime
inflow accounted for 30% of the daily variability in PM2.5 in the US. The full effects of synoptic
patterns on PM2.5 are still not fully understood, and quantifying them remains an open, challenging
task (Shen et al., 2017; Tec et al., 2023).

Estimating the climate penalty with chemical transport models (CTMs) has been the subject of much
attention within the atmospheric modeling community (Racherla & Adams, 2006; Hong et al., 2019;
Val Martin et al., 2015; Fiore et al., 2022; East et al., 2022; Day & Pandis, 2015; Tai et al., 2012;
Jacob & Winner, 2009). Yet CTMs show considerable uncertainty and low consistency among each
other (Shen et al., 2017; East et al., 2022). And developing empirical calibration methods remain an
open research problem (Turnock et al., 2020; East et al., 2022; Cheng et al., 2021). For these reasons,
statistical methods to project air pollution have been proposed to complement projections based on
CTMs (Shen et al., 2017). This paper introduces a statistical framework for estimating the climate
penalty considering the complex relationship between climate and PM2.5. It combines state-of-the-
art deep learning architectures for spatial feature learning with carefully designed spatio-temporal
trend modeling. Spatial feature learning allows learning from synoptic weather patterns, socio-
demographic data, and other predictors strongly influencing PM2.5 (Shen et al., 2017; Tec et al.,
2023). Random effects and time trend modeling are used to deconvolve the effects of a changing
climate from the downward trend in air pollution due to increasing air quality regulation (EPA, 2011;
Hu et al., 2014), as well as from other sources of unmeasured spatial heterogeneity (Urdangarin
et al., 2022; Shen et al., 2017). Notice that our goal differs from forecasting using spatiotemporal
patterns PM2.5 (e.g., Wen et al. (2019); Liang et al. (2023)). We aim instead to project PM2.5 under
a constellation of climate change scenarios at interdecadal time scales (Shen et al., 2017).

2 METHODS

We will use the following notation convention. The observed PM2.5 grid is denoted Yt. We denote
the climate grid as Wt and the grid of all other covariates, such as local emissions and demographic
information, as Xt. We denote them Fig. 2 summarizes our proposed model. The observed PM2.5

is predicted from two latent vectors Zt and Ut of arbitrary dimension representing the measured
and unmeasured spatio-temporal which will be combined using attention-like mechanisms (Vaswani
et al., 2017).

Spatial feature learning of climate impacts on PM2.5. The measured spatio-temporal variation
Zt is extracted from the climate and covariate grids (Wt and Xt) using a subnetwork for spatial
feature learning. Various design choices for this subnetwork will be evaluated and compared, in-
cluding convolutional architectures (He et al., 2016; Ronneberger et al., 2015; Liu et al., 2022; Tec
et al., 2023) and vision transformers (Vaswani et al., 2017; Zhang et al., 2023; Nguyen et al., 2023).

Spatio-temporal trends and heterogeneity modeling. For the unmeasured variation term Ut, we
will draw from the literatures of meteorological detrending (Henneman et al., 2015) and spatial ran-

2



Published as a workshop paper at ”Tackling Climate Change with Machine Learning”, ICLR 2023

Figure 2: Proposed predictive model with various design choices.

dom effect modeling (Gelfand et al., 2010; Besag, 1974). For instance, Wells et al. (2021) model a
pollutant’s time series using an indicator for the year and a seasonal component. Qiu et al. (2022) es-
timate a debiased linear temporal trend using double machine-learning (Chernozhukov et al., 2018).
We will also investigate machine learning-driven strategies based on learning position encoders with
attention (Vaswani et al., 2017). These trends will be estimated at each location. Ensuring spatial
smoothness may improve the estimates and reduce overfitting, so we will investigate and evaluate
using auto-regression (CAR) (Besag, 1974). For our final future projections, Ut will be held con-
stant. This is so because it represents unmeasured variation, and thus it is cannot be known under
a distributional shift. But recall that the climate penalty measures the impact of climate change on
PM2.5, factoring out the changes in other sources of pollutant emissions. Thus, it is logical to make
projections of future PM2.5 values holding Ut constant to its last estimated value.

Evaluation metric. Disparities of air pollution exposure under future projected PM2.5 will be
measured using the standardized metrics proposed by Jbaily et al. (2022). To select the final neu-
ral network architecture for predicting PM2.5, we will use the mean-squared error evaluated at a
future dataset not used during training. We do this because we aim to evaluate the prediction of
PM2.5 under a distributional shift of Wt. Notice, however, that a systematic control of the effect
of a distributional shift is not possible using real data due to the covariates and unmeasured factors
changing simultaneously. Thus, to further isolate the effect of climate in our evaluation, we will
generate semi-synthetic datasets that are highly representative of PM2.5. Semi-synthetic datasets
are produced from a simulated or estimated model of the outcome variable, allowing us to evaluate
performance under a controlled distributional shift. Finally, we remark that the distributional shift
perspective motivates us to investigate potential training methods that specifically target robustness
in such scenarios. These methods include invariant risk minimization (Arjovsky et al., 2019), risk
extrapolation (Krueger et al., 2021), and Fishr (Rame et al., 2022). However, it is not entirely obvi-
ous that they will perform better than standard empirical risk minimization (likelihood estimation).

3 DATA SOURCES

We will consider the shared socio-economic pathways (SSP) scenarios and the climate model inter-
comparison projects (CMIP6). Our primary source for projected weather data is NASA Earth Ex-
change Global Daily Downscaled Projections dataset (NEX-GDDP-CMIP6) (Thrasher et al., 2022),
designed for studies of climate change impact. This dataset contains nine climate variables at high-
resolution (roughly ∼28 km or 0.25◦), including temperature, relative humidity, precipitation, etc.
We will consider the period 2000–2050, focusing on the conterminous US due to more data avail-
ability. Unfortunately, we could not find downscaled wind direction data. Yet these data can be
incorporated at the coarser resolution of 200km directly from the CMIP6 project (O’Neill et al.,
2016). Interestingly, Höhlein et al. (2020) argue that convolutional architectures are effective for
wind vector downscaling, suggesting that even if included at a coarser resolution, the spatial feature
learning layer may extract relevant information. Climate data will be enhanced with topograph-
ical and land use information from the US Geological Survey (Rabbitt, 1989) and demographic
information will be gathered from the US Census Bureau (2011), which are proxys for greenhouse
emissions. When evaluating future projections, demographic patterns will be either fixed constant
or scaled accordingly to current migratory and national trends (US Census Bureau, 2017; Ambi-
nakudige & Parisi, 2017). Our combined dataset will be shared publicly on the dataverse (King,
2007) to facilitate future research.
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Source Description

NEX-GDDP-CMIP6 Climate variables at 0.25º x 0.25º resolution with historic daily data and projec-
tions under climate change up to 2100.

Di et al. (2019) PM2.5 at 1× 1 km resolution. Daily historic surface 2000–2015.
US Geological Survey Land cover and land use created using satellite imagery and other data sources.
US Census Demographic and socio-economic variables by census track.

Table 1: Summary of Data sources

4 CONCLUDING THOUGHTS

This work holds the potential to inform planning and preparedness with an improved understanding
of how the changing climate will impact air quality and public health. By highlighting inequities in
PM2.5 exposure, the study can help understand the relation between the expected changes to air qual-
ity exposure and inequity. However, it is important to acknowledge that the methodology is subject
to uncertainties, limitations, and assumptions about the future. While these assumptions are neces-
sary and shared among existing frameworks, transparent communication of these considerations is
very important, and the results cannot be interpreted without them.
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