

PROJECTING THE CLIMATE PENALTY ON PM_{2.5} POLLUTION WITH SPATIAL DEEP LEARNING

Mauricio Tec & Francesca Dominici

Department of Biostatistics
Harvard T.H. Chan School of Public Health
Boston, MA, USA
mauriciogtec@hsph.harvard.edu

Riccardo Cadei

Department of Computer and Communication Science
École Polytechnique Fédérale de Lausanne
Lausanne, Switzerland
riccardo.cadei@epfl.ch

Corwin M. Zigler

Department of Statistics and Data Sciences
The University of Texas at Austin
Austin, TX, USA
cory.zigler@austin.utexas.edu

ABSTRACT

The climate penalty measures the effects of a changing climate on air quality due to the interaction of pollution with climate factors, independently of future changes in emissions. This work introduces a statistical framework for estimating the climate penalty on soot pollution (PM_{2.5}), which has been linked to respiratory and cardiovascular diseases and premature mortality. The framework evaluates the disparities in future PM_{2.5} exposure across racial/ethnic and income groups—an important step towards informing mitigation public health policy and promoting environmental equity in addressing the effects of climate change. The proposed methodology aims to improve existing statistical-based methods for estimating the climate penalty using an expressive and scalable predictive model based on spatial deep learning with spatiotemporal trend estimation. The proposed approach will (1) use higher-resolution climate inputs, which current statistical approaches to estimate the climate penalty cannot accommodate; (2) integrate additional predictive data sources such as demographics, geology, and land use; (3) consider regional dependencies and synoptic weather patterns influencing PM_{2.5}, deconvolving the effects of climate change from increasing air quality regulations and other sources of unmeasured spatial heterogeneity.

1 INTRODUCTION

Air pollution is one of the leading mortality risk factors worldwide. In 2019, up to 6.7 million deaths worldwide were attributed to cardiovascular diseases likely caused by air pollution exposure (Muray et al., 2020; Brauer et al., 2021). Particularly concerning is soot pollution from fine particulate matter with a diameter less than 2.5 μm (PM_{2.5}). These small particles can travel deep into the lungs, and some may even enter the bloodstream (EPA, 2023). Several studies have found significant evidence that PM_{2.5} is linked to respiratory and cardiovascular disease (Brook et al., 2010) and premature mortality (Wu et al., 2020; Pelucchi et al., 2009; Laden et al., 2006). Due to its significant public health and economic consequences (Wu et al., 2020), it is crucial to understand how PM_{2.5} will be affected by climate change, which is believed to increase air pollution concentrations (East et al., 2022). This effect is known as the *climate penalty*, and it measures the effects of a changing climate on PM_{2.5} concentration due to the interaction of pollution with climate factors, independently of future changes in emission levels (Fiore et al., 2022). Here we introduce a novel statistical framework (summarized in Fig. 1) for estimating the climate penalty allowing us to produce higher-resolution predictions and use more predictors than existing statistical approaches. Our scientific aim is to predict the climate penalty on PM_{2.5} under a constellation of climate change scenarios and use these projections to evaluate the disparities in future PM_{2.5} exposure across racial/ethnic and

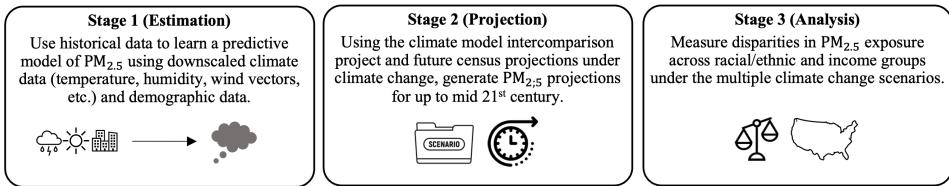


Figure 1: Proposed workflow.

income groups. The findings have the potential to inform mitigation policy aiming to protect public health and promote environmental equity when addressing the effects of climate change.

Accurately characterizing the climate penalty is challenging due to the complex interactions between atmospheric patterns and PM_{2.5} (Tai et al., 2010). For instance, higher temperatures increase PM_{2.5} due to increasing oxidation rates and fire emissions. By contrast, the effect of relative humidity and cloud cover may vary by different PM_{2.5} components and geographic locations (Tai et al., 2010; Koch et al., 2003). PM_{2.5} levels are also affected by regional or *synoptic* weather patterns occurring at a larger spatial scale (Shen et al., 2015; Leung et al., 2018). Thishan Dharshana et al. (2010) estimate that synoptic systems derived from wind patterns such as cold frontal passages and maritime inflow accounted for 30% of the daily variability in PM_{2.5} in the US. The full effects of synoptic patterns on PM_{2.5} are still not fully understood, and quantifying them remains an open, challenging task (Shen et al., 2017; Tec et al., 2023).

Estimating the climate penalty with chemical transport models (CTMs) has been the subject of much attention within the atmospheric modeling community (Racherla & Adams, 2006; Hong et al., 2019; Val Martin et al., 2015; Fiore et al., 2022; East et al., 2022; Day & Pandis, 2015; Tai et al., 2012; Jacob & Winner, 2009). Yet CTMs show considerable uncertainty and low consistency among each other (Shen et al., 2017; East et al., 2022). And developing empirical calibration methods remain an open research problem (Turnock et al., 2020; East et al., 2022; Cheng et al., 2021). For these reasons, statistical methods to project air pollution have been proposed to complement projections based on CTMs (Shen et al., 2017). This paper introduces a statistical framework for estimating the climate penalty considering the complex relationship between climate and PM_{2.5}. It combines state-of-the-art deep learning architectures for spatial feature learning with carefully designed spatio-temporal trend modeling. Spatial feature learning allows learning from synoptic weather patterns, socio-demographic data, and other predictors strongly influencing PM_{2.5} (Shen et al., 2017; Tec et al., 2023). Random effects and time trend modeling are used to deconvolve the effects of a changing climate from the downward trend in air pollution due to increasing air quality regulation (EPA, 2011; Hu et al., 2014), as well as from other sources of unmeasured spatial heterogeneity (Urdangarin et al., 2022; Shen et al., 2017). Notice that our goal differs from forecasting using spatiotemporal patterns PM_{2.5} (e.g., Wen et al. (2019); Liang et al. (2023)). We aim instead to project PM_{2.5} under a constellation of climate change scenarios at interdecadal time scales (Shen et al., 2017).

2 METHODS

We will use the following notation convention. The observed PM_{2.5} grid is denoted \mathbf{Y}_t . We denote the climate grid as \mathbf{W}_t and the grid of all other covariates, such as local emissions and demographic information, as \mathbf{X}_t . We denote them Fig. 2 summarizes our proposed model. The observed PM_{2.5} is predicted from two latent vectors \mathbf{Z}_t and \mathbf{U}_t of arbitrary dimension representing the measured and unmeasured spatio-temporal which will be combined using attention-like mechanisms (Vaswani et al., 2017).

Spatial feature learning of climate impacts on PM2.5. The measured spatio-temporal variation \mathbf{Z}_t is extracted from the climate and covariate grids (\mathbf{W}_t and \mathbf{X}_t) using a subnetwork for spatial feature learning. Various design choices for this subnetwork will be evaluated and compared, including convolutional architectures (He et al., 2016; Ronneberger et al., 2015; Liu et al., 2022; Tec et al., 2023) and vision transformers (Vaswani et al., 2017; Zhang et al., 2023; Nguyen et al., 2023).

Spatio-temporal trends and heterogeneity modeling. For the unmeasured variation term \mathbf{U}_t , we will draw from the literatures of meteorological detrending (Henneman et al., 2015) and spatial ran-

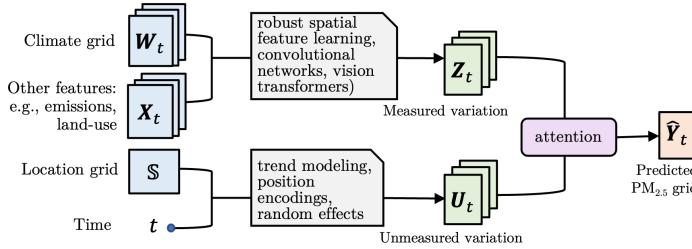


Figure 2: Proposed predictive model with various design choices.

dom effect modeling (Gelfand et al., 2010; Besag, 1974). For instance, Wells et al. (2021) model a pollutant’s time series using an indicator for the year and a seasonal component. Qiu et al. (2022) estimate a debiased linear temporal trend using double machine-learning (Chernozhukov et al., 2018). We will also investigate machine learning-driven strategies based on learning position encoders with attention (Vaswani et al., 2017). These trends will be estimated at each location. Ensuring spatial smoothness may improve the estimates and reduce overfitting, so we will investigate and evaluate using auto-regression (CAR) (Besag, 1974). For our final future projections, U_t will be held constant. This is so because it represents unmeasured variation, and thus it is cannot be known under a distributional shift. But recall that the climate penalty measures the impact of climate change on $PM_{2.5}$, factoring out the changes in other sources of pollutant emissions. Thus, it is logical to make projections of future $PM_{2.5}$ values holding U_t constant to its last estimated value.

Evaluation metric. Disparities of air pollution exposure under future projected $PM_{2.5}$ will be measured using the standardized metrics proposed by Jbaily et al. (2022). To select the final neural network architecture for predicting $PM_{2.5}$, we will use the mean-squared error evaluated at a future dataset not used during training. We do this because we aim to evaluate the prediction of $PM_{2.5}$ under a distributional shift of W_t . Notice, however, that a systematic control of the effect of a distributional shift is not possible using real data due to the covariates and unmeasured factors changing simultaneously. Thus, to further isolate the effect of climate in our evaluation, we will generate semi-synthetic datasets that are highly representative of $PM_{2.5}$. Semi-synthetic datasets are produced from a simulated or estimated model of the outcome variable, allowing us to evaluate performance under a controlled distributional shift. Finally, we remark that the distributional shift perspective motivates us to investigate potential training methods that specifically target robustness in such scenarios. These methods include invariant risk minimization (Arjovsky et al., 2019), risk extrapolation (Krueger et al., 2021), and Fishr (Rame et al., 2022). However, it is not entirely obvious that they will perform better than standard empirical risk minimization (likelihood estimation).

3 DATA SOURCES

We will consider the shared socio-economic pathways (SSP) scenarios and the climate model inter-comparison projects (CMIP6). Our primary source for projected weather data is NASA Earth Exchange Global Daily Downscaled Projections dataset (NEX-GDDP-CMIP6) (Thrasher et al., 2022), designed for studies of climate change impact. This dataset contains nine climate variables at high-resolution (roughly ~ 28 km or 0.25°), including temperature, relative humidity, precipitation, etc. We will consider the period 2000–2050, focusing on the conterminous US due to more data availability. Unfortunately, we could not find downscaled wind direction data. Yet these data can be incorporated at the coarser resolution of 200km directly from the CMIP6 project (O’Neill et al., 2016). Interestingly, Höhlein et al. (2020) argue that convolutional architectures are effective for wind vector downscaling, suggesting that even if included at a coarser resolution, the spatial feature learning layer may extract relevant information. Climate data will be enhanced with topographical and land use information from the US Geological Survey (Rabbitt, 1989) and demographic information will be gathered from the US Census Bureau (2011), which are proxys for greenhouse emissions. When evaluating future projections, demographic patterns will be either fixed constant or scaled accordingly to current migratory and national trends (US Census Bureau, 2017; Ambanakudige & Parisi, 2017). Our combined dataset will be shared publicly on the dataverse (King, 2007) to facilitate future research.

Source	Description
NEX-GDDP-CMIP6	Climate variables at $0.25^\circ \times 0.25^\circ$ resolution with historic daily data and projections under climate change up to 2100.
Di et al. (2019)	$PM_{2.5}$ at 1×1 km resolution. Daily historic surface 2000–2015.
US Geological Survey	Land cover and land use created using satellite imagery and other data sources.
US Census	Demographic and socio-economic variables by census tract.

Table 1: Summary of Data sources

4 CONCLUDING THOUGHTS

This work holds the potential to inform planning and preparedness with an improved understanding of how the changing climate will impact air quality and public health. By highlighting inequities in $PM_{2.5}$ exposure, the study can help understand the relation between the expected changes to air quality exposure and inequity. However, it is important to acknowledge that the methodology is subject to uncertainties, limitations, and assumptions about the future. While these assumptions are necessary and shared among existing frameworks, transparent communication of these considerations is very important, and the results cannot be interpreted without them.

REFERENCES

Shrinidhi Ambinakudige and Domenico Parisi. A spatiotemporal analysis of inter-county migration patterns in the united states. *Applied Spatial Analysis and Policy*, 10, 2017.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. *arXiv preprint arXiv:1907.02893*, 2019.

Julian Besag. Spatial interaction and the statistical analysis of lattice systems. *Journal of the Royal Statistical Society: Series B (Methodological)*, 36(2), 1974.

Michael Brauer, Barbara Casadei, Robert A Harrington, Richard Kovacs, Karen Sliwa, and WHF Air Pollution Expert Group. Taking a stand against air pollution—the impact on cardiovascular disease: A joint opinion from the world heart federation, american college of cardiology, american heart association, and the european society of cardiology. *Circulation*, 143(14), 2021.

Robert D Brook, Sanjay Rajagopalan, C Arden Pope III, Jeffrey R Brook, Aruni Bhatnagar, Ana V Diez-Roux, Fernando Holguin, Yuling Hong, Russell V Luepker, Murray A Mittleman, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the american heart association. *Circulation*, 121(21), 2010.

Jing Cheng, Dan Tong, Yang Liu, Sha Yu, Liu Yan, Bo Zheng, Guannan Geng, Kebin He, and Qiang Zhang. Comparison of current and future pm2. 5 air quality in china under cmip6 and dpec emission scenarios. *Geophysical Research Letters*, 48(11), 2021.

Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and James Robins. Double/debiased machine learning for treatment and structural parameters: Double/debiased machine learning. *The Econometrics Journal*, 21(1), 2018.

Melissa C Day and Spyros N Pandis. Effects of a changing climate on summertime fine particulate matter levels in the eastern us. *Journal of Geophysical Research: Atmospheres*, 120(11), 2015.

Qian Di, Heresh Amini, Liuhua Shi, Itai Kloog, Rachel Silvern, James Kelly, M Benjamin Sabath, Christine Choirat, Petros Koutrakis, Alexei Lyapustin, et al. An ensemble-based model of pm2. 5 concentration across the contiguous united states with high spatiotemporal resolution. *Environment international*, 130, 2019.

James D East, Erwan Monier, and Fernando Garcia-Menendez. Characterizing and quantifying uncertainty in projections of climate change impacts on air quality. *Environmental Research Letters*, 17(9), 2022.

EPA. National air quality – status and trends through 2010. *U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards*, 2011. Air Quality Assessment Division, RTP, NC 27711.

EPA. How does pm affect human health?, 2023. URL <https://www3.epa.gov/region1/airquality/pm-human-health.html>. Accessed February 2023.

Arlene M Fiore, George P Milly, Sarah E Hancock, Laurel Quiñones, Jared H Bowden, Erik Helstrom, Jean-François Lamarque, Jordan Schnell, J Jason West, and Yangyang Xu. Characterizing changes in eastern us pollution events in a warming world. *Journal of Geophysical Research: Atmospheres*, 127(9), 2022.

Alan E Gelfand, Peter Diggle, Peter Guttorp, and Montserrat Fuentes. *Handbook of spatial statistics*. CRC press, 2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In *European conference on computer vision*. Springer, 2016.

Lucas RF Henneman, Heather A Holmes, James A Mulholland, and Armistead G Russell. Meteorological detrending of primary and secondary pollutant concentrations: Method application and evaluation using long-term (2000–2012) data in atlanta. *Atmospheric Environment*, 119:201–210, 2015.

Kevin Höhlein, Michael Kern, Timothy Hewson, and Rüdiger Westermann. A comparative study of convolutional neural network models for wind field downscaling. *Meteorological Applications*, 27(6), 2020.

Chaopeng Hong, Qiang Zhang, Yang Zhang, Steven J Davis, Dan Tong, Yixuan Zheng, Zhu Liu, Dabo Guan, Kebin He, and Hans Joachim Schellnhuber. Impacts of climate change on future air quality and human health in china. *Proceedings of the national academy of sciences*, 116(35), 2019.

X Hu, LA Waller, A Lyapustin, Y Wang, and Yang Liu. 10-year spatial and temporal trends of pm 2.5 concentrations in the southeastern us estimated using high-resolution satellite data. *Atmospheric Chemistry and Physics*, 14(12), 2014.

Daniel J Jacob and Darrell A Winner. Effect of climate change on air quality. *Atmospheric environment*, 43(1):51–63, 2009.

Abdulrahman Jbaily, Xiaodan Zhou, Jie Liu, Ting-Hwan Lee, Leila Kamareddine, Stéphane Verguet, and Francesca Dominici. Air pollution exposure disparities across us population and income groups. *Nature*, 601(7892), 2022.

Gary King. An introduction to the dataverse network as an infrastructure for data sharing, 2007.

Dorothy Koch, Jeffrey Park, and Anthony Del Genio. Clouds and sulfate are anticorrelated: A new diagnostic for global sulfur models. *Journal of Geophysical Research: Atmospheres*, 108, 2003.

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapolation (rex). In *International Conference on Machine Learning*, 2021.

Francine Laden, Joel Schwartz, Frank E Speizer, and Douglas W Dockery. Reduction in fine particulate air pollution and mortality: extended follow-up of the harvard six cities study. *American journal of respiratory and critical care medicine*, 173(6), 2006.

Danny M Leung, Amos PK Tai, Loretta J Mickley, Jonathan M Moch, Aaron van Donkelaar, Lu Shen, and Randall V Martin. Synoptic meteorological modes of variability for fine particulate matter (pm 2.5) air quality in major metropolitan regions of china. *Atmospheric Chemistry and Physics*, 18(9), 2018.

Yuxuan Liang, Yutong Xia, Songyu Ke, Yiwei Wang, Qingsong Wen, Junbo Zhang, Yu Zheng, and Roger Zimmermann. Airformer: Predicting nationwide air quality in china with transformers. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, 2023.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A convnet for the 2020s. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2022.

Christopher JL Murray, Aleksandr Y Aravkin, Peng Zheng, Cristiana Abbafati, Kaja M Abbas, Mohsen Abbasi-Kangevari, Foad Abd-Allah, Ahmed Abdelalim, Mohammad Abdollahi, Ibrahim Abdollahpour, et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. *The lancet*, 396(10258), 2020.

Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover. Climax: A foundation model for weather and climate. *arXiv preprint arXiv:2301.10343*, 2023.

Brian C O'Neill, Claudia Tebaldi, Detlef P Van Vuuren, Veronika Eyring, Pierre Friedlingstein, George Hurt, Reto Knutti, Elmar Kriegler, Jean-Francois Lamarque, Jason Lowe, et al. The scenario model intercomparison project (scenariomip) for cmip6. *Geoscientific Model Development*, 9(9), 2016.

Claudio Pelucchi, Eva Negri, Silvano Gallus, Paolo Boffetta, Irene Tramacere, and Carlo La Vecchia. Long-term particulate matter exposure and mortality: a review of european epidemiological studies. *BMC public health*, 9(1), 2009.

Minghao Qiu, Corwin Zigler, and Noelle E Selin. Statistical and machine learning methods for evaluating trends in air quality under changing meteorological conditions. *Atmospheric Chemistry and Physics*, 22(16), 2022.

Mary C Rabbitt. *The United States Geological Survey, 1879-1989*, volume 1050. US Government Printing Office, 1989.

Pavan Nandan Racherla and Peter J Adams. Sensitivity of global tropospheric ozone and fine particulate matter concentrations to climate change. *Journal of Geophysical Research: Atmospheres*, 111(D24), 2006.

Alexandre Rame, Corentin Dancette, and Matthieu Cord. Fishr: Invariant gradient variances for out-of-distribution generalization. In *International Conference on Machine Learning*, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In *International Conference on Medical image computing and computer-assisted intervention*, 2015.

L Shen, LJ Mickley, and APK Tai. Influence of synoptic patterns on surface ozone variability over the eastern united states from 1980 to 2012. *Atmospheric Chemistry and Physics*, 15(19), 2015.

Lu Shen, Loretta J Mickley, and Lee T Murray. Influence of 2000–2050 climate change on particulate matter in the united states: results from a new statistical model. *Atmospheric Chemistry and Physics*, 17(6), 2017.

Amos PK Tai, Loretta J Mickley, and Daniel J Jacob. Correlations between fine particulate matter (pm2. 5) and meteorological variables in the united states: Implications for the sensitivity of pm2. 5 to climate change. *Atmospheric environment*, 44(32), 2010.

Amos PK Tai, Loretta J Mickley, and Daniel J Jacob. Impact of 2000–2050 climate change on fine particulate matter (pm 2.5) air quality inferred from a multi-model analysis of meteorological modes. *Atmospheric chemistry and physics*, 12(23), 2012.

Mauricio Tec, James Scott, and Corwin Zigler. Weather2vec: Representation learning for causal inference with non-local confounding in air pollution and climate studies. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, 2023.

KG Thishan Dharshana, Sergey Kravtsov, and Jonathan DW Kahl. Relationship between synoptic weather disturbances and particulate matter air pollution over the united states. *Journal of Geophysical Research: Atmospheres*, 115, 2010.

Bridget Thrasher, Weile Wang, Andrew Michaelis, Forrest Melton, Tsengdar Lee, and Ramakrishna Nemani. Nasa global daily downscaled projections, cmip6. *Scientific Data*, 9(1), 2022.

Steven T Turnock, Robert J Allen, Martin Andrews, Susanne E Bauer, Makoto Deushi, Louisa Emmons, Peter Good, Larry Horowitz, Jasmin G John, Martine Michou, et al. Historical and future changes in air pollutants from cmip6 models. *Atmospheric Chemistry and Physics*, 20(23), 2020.

Arantxa Urdangarin, Tomás Goicoa, and María Dolores Ugarte. Evaluating recent methods to overcome spatial confounding. *Revista Matemática Complutense*, 2022.

US Census Bureau. 2010 census. U.S. Department of Commerce, February 2011.

US Census Bureau. Projections for the united states: 2017 to 2060. *National Population Projections Datasets*, 2017. URL <https://www.census.gov/data/datasets/2017/demo/popproj/2017-popproj.html>. Accessed February 2023.

M Val Martin, CL Heald, J-F Lamarque, Simone Tilmes, LK Emmons, and BA Schichtel. How emissions, climate, and land use change will impact mid-century air quality over the united states: a focus on effects at national parks. *Atmospheric Chemistry and Physics*, 15(5), 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.

Benjamin Wells, Pat Dolwick, Brian Eder, Mark Evangelista, Kristen Foley, Elizabeth Mannshardt, Chris Misenis, and Anthony Weishampel. Improved estimation of trends in us ozone concentrations adjusted for interannual variability in meteorological conditions. *Atmospheric Environment*, 248, 2021.

Congcong Wen, Shufu Liu, Xiaojing Yao, Ling Peng, Xiang Li, Yuan Hu, and Tianhe Chi. A novel spatiotemporal convolutional long short-term neural network for air pollution prediction. *Science of the total environment*, 654, 2019.

X Wu, D Braun, J Schwartz, MA Kioumourtzoglou, and FJSA Dominici. Evaluating the impact of long-term exposure to fine particulate matter on mortality among the elderly. *Science advances*, 6(29), 2020.

Jing Zhang, Qiuge Qin, Qi Ye, and Tong Ruan. St-unet: Swin transformer boosted u-net with cross-layer feature enhancement for medical image segmentation. *Computers in Biology and Medicine*, 2023.