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ABSTRACT

Subgrid parameterizations that represent physical processes occurring below the
resolution of current climate models are any important component in producing
accurate, long-term predictions for the climate. A variety of approaches have been
tested to design these components, including deep learning methods. In this work,
we evaluate a proof of concept illustrating a multiscale approach to this prediction
problem. We train neural networks to predict subgrid forcing values on a testbed
model and examine improvements in prediction accuracy which can be obtained by
using additional information in both fine-to-coarse and coarse-to-fine directions.

1 INTRODUCTION

Climate models, which simulate the long-term evolution of the Earth’s atmosphere, oceans, and
terrestrial weather, are critical tools for projecting the impacts of climate change around the globe.
Due to limits on available computational resources, these models must be run at a coarsened spatial
resolution which cannot resolve all physical processes relevant to the climate system (Fox-Kemper
et al.,|2014). To reflect the contribution of these subgrid-scale processes, closure models are added
to climate models to provide the needed subgrid-scale forcing. These parameterizations modeling
the contribution of these fine-scale dynamics are critical to high quality and accurate long term
predictions (Ross et al.,2023; Fox-Kemper et al.,[2019). A variety of approaches to designing these
parameterizations have been tried ranging from hand-designed formulations (Smagorinsky, |1963)),
to modern machine learning with genetic algorithms (Ross et al., [2023)), or neural networks trained
on collected snapshots (Zanna & Bolton, 2020; |Guillaumin & Zanna, [2021; Maulik et al., [2019;
Perezhogin et al.,2023)) or in an online fashion through the target simulation (Frezat et al., 2022).

In this work we examine the impact of decomposing the problem of predicting subgrid forcings into
prediction problems across scales. The problem of learning subgrid forcing is inherently multiscale;
the subgrid dynamics which must be restored represent the impact of the subgrid and resolved scales
on each other. Closure models for climate are designed to be resolution-aware (Jansen et al.| 2019),
but even so existing deep learning subgrid models do not explicitly leverage the interactions between
scales, leaving it to the neural networks to implicitly learn these relationships. Explicitly including
this structure as part of a deep learning approach may help regularize the learned closure models and
support learning in regimes with limited training data or in the presence of underlying uncertainty. We
explore the impact of this decomposition, providing proof of concept results illustrating the potential
of imposing this prediction structure on a simple fully-convolutional neural network closure model.

2 APPROACH

We consider the problem of learning subgrid forcings for an idealized fluid model. In particular we
study a two layer quasi-geostrophic model as implemented in PyQG (Abernathey et al.|[2022) which
we have ported to JAX|'| (Bradbury et al.,[2018)). In this model the variable of interest is the potential
vorticity ¢ which evolves in two layers each with two dimensions and periodic boundary conditions.
The model can be evaluated with a configurable grid resolution and states can be ported to lower
resolutions by coarse-graining and filtering. Further details of this model are included in Appendix [A]

IThe ported QG model is available at https://github.com/karlotness/pyqg- jax


https://github.com/karlotness/pyqg-jax
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To generate ground truth data, we run the model at a very high (“true”) resolution. This produces
trajectories guye(f) and time derivatives dgie(7)/dt. Next we generate training data at a high
resolution by applying a coarsening and filtering operator C giving variables § = C(g). Given
nonlinearities in the model, this coarsening does not commute with the dynamics of the model. To
correct for this we must apply a subgrid forcing term S:
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Note that formally the forcing S is a function of the state ge. In a climate modeling application we
do not have access to this variable and so we train a model fy(g) ~ S which may be stochastic.

We continue this process, introducing another downscalin operator D and upscaling D*. Taking
ghr 2 G as our high resolution samples, we produce low resolution samples gi; = D(gy,) and Sy, £ D(S).
For any of these quantities v we have a decomposition v = D" Dv-+1/, where v/ are the details removed
by D. Our experiments thus involve three resolutions, from fine to coarse: a “true” resolution; a high
resolution, hr; and a low resolution, Ir. The closures S try to update hr to match the “true” resolution.

Just as predicting S from gy is fully deterministic, while predicting it from gy, involves uncertainty,
we anticipate a similar trend to hold for D(S). In other words, predicting D(S) from g, should
be easier than predicting D(S) directly from gj,. Then, using this coarse-grained prediction D(S)
as a foundation, we can learn to predict only the missing details and add them. This process
splits the problem of predicting S into two phases: (1) a “downscale” prediction to form D(S), and
(2) a “buildup” prediction combining gp; and D(S) to predict S, adding the missing details. This
decomposition takes advantage of self-similarity in the closure problem to pass information between
the coarse and fine scales and improve predictions.

As a proof of concept of this approach we test the “downscale” and “buildup” processes against
baselines without the additional information. In both experiments, all required inputs are provided by
an oracle backed by a ground truth data set. For all experiments we train a feedforward convolutional
neural network to perform the prediction task, three copies of each network. These neural networks
have one of two architectures, a “small” architecture as used in Guillaumin & Zanna (2021) and a
“large” architecture with larger convolution kernels. Details of these experiments are provided below,
and information on the network architectures and training are included in Appendix [B]

Downscale prediction: we compare the task of predicting S}, 2 D(S) with access to high resolution
information gy, or restricted to low resolution g;,. This provides an estimate of the advantage gained
by predicting the target forcing with access to details at a scale finer than that of the network’s output.
We train two networks with the same architecture to perform one of two prediction tasks:

D ofgownscale(th) ~ S and D ofgcross oDT (Cllr) ~ S. 2)

However, to ensure that the convolution kernels process information at the same spatial size, and
differ only in the spectral scales included, we first upsample all inputs to the same fixed size using a
spectral upscaling operator D" described in Appendix

We train networks to carry out this prediction task between three scales: resolutions of 128 x 128,
96 x 96, and 64 x 64, chosen so that the system requires closure (there are sufficient dynamics below
the grid-scale cutoff), but does not diverge (Ross et al., |2023)). We test all combinations of distinct
high and low resolutions. The full prediction process including the re-sampling operators is illustrated
in Figure [I|and experimental results are included in Table[I]discussed below.

Buildup prediction: we also test a prediction problem in the opposite direction, predicting finer-scale
details with access to lower-resolution predictions, similar to a learned super-resolution process used
in recent generative modeling works (Singer et al.,[2022; |Ho et al.l 2022). We train neural networks:

guildup (qhe, D" (Sir)) = Spr — D* (Sir) and fgireCt(Qhr) ~ Shr 3

where Sy, — D7 (Sy;) are the details of S, which are not reflected in Si;. The additional input Sy, is
given by an oracle using ground truth data in the training and evaluation sets.

This experiment estimates the value in having a high-quality, higher-confidence prediction Sy, in
addition to gp;, when predicting the details of Sy,;. That is, the experiment estimates the value in

ZWe use “downscale” and “downscaling” to refer to coarsening a target variable, removing finer scales.
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Figure 1: Downscale vs. across prediction tasks. The networks referenced in Equationare combinations of an
inner network fy with the fixed rescaling operators D, D™. The overall prediction is indicated with a dashed line.
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Figure 2: Buildup vs. direct prediction. The networks in Equationare combinations of the networks fy with
the indicated fixed operations. In Figure@ fo predicts the details which are combined with Sy, from an oracle.

starting the prediction of Sy, by first locking in a coarse-grained version of the target, and separately
enhancing it with finer-scale features.

As in the other experiment, we carry out this upscaling between three resolutions: 128, 96, and 64,
stepping between all distinct combinations of low and high resolutions. The two prediction tasks are
illustrated in Figure 2] and results are included in Table[2] discussed below.

Combined prediction: we combine the networks trained in the “downscale” and “buildup” experi-
ments, passing the downscale prediction as an input to the buildup network. This removes the oracle
providing predictions Sj;. We test all pairings of neural network architecture sizes and re-trained
networks. Averaged results for each of our metrics are included in Table [3|and are discussed below.

3 EXPERIMENTAL RESULTS

For each of the prediction tasks described in Section [2} we train three neural networks. Once trained,
we evaluate their performance on a held-out evaluation set measuring performance with three metrics:
a mean squared error (MSE), a relative ¢, loss, and a relative ¢, of the spectra of the predictions.
Details of these metrics are provided in Appendix [D]

Table [T| shows the results for the downscale experiments, comparing against “across” prediction
which accesses only coarse-scale information. In these results we observe an advantage to performing
the predictions with access to higher-resolution data (the “downscale” columns), suggesting potential
advantages and a decrease in uncertainty in such predictions.

Results for experiments examining prediction in the opposite direction—predicting a high-resolution
forcing with access to a low-resolution copy of the target from an oracle—are included in Table[2]
We also observe an advantage in this task from having access to the additional information. The low
resolution input in the “buildup” experiments yields lower errors at evaluation. This advantage is
greater when the additional input is closer in scale to the target output. The predictions building up
from 96 x 96 to 128 x 128 have lower errors than those which access an additional 64 x 64 input.
This is not unexpected given that the input with nearer resolution resolves more of the target value,
leaving fewer details which need to be predicted by the network.

The results of the combined experiments in Table [3]illustrate the early potential of this approach. The
two networks being combined were trained separately using only ground-truth inputs. Even so, their
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NN Size  Metric 128 — 96 128 — 64 96 — 64
Downscale Across Downscale Across Downscale Across
MSE 0.054 0.073 0.003 0.006 0.034 0.060
Small Rel /4, 0.315 0.365 0.406 0.633 0.360 0.476
Rel Spec ¢ 0.123 0.159 0.169 0.480 0.151 0.256
MSE 0.048 0.069 0.003 0.006 0.031 0.058
Large Rel 4, 0.295 0.352 0.405 0.628 0.343 0.465
Rel Spec 4 0.099 0.144 0.177 0.485 0.132 0.243

Table 1: Evaluation results for downscale vs. across generation. In all metrics, lower is better. The numbers in
the first row of the table heading show the different scales involved in both prediction tasks.

NN Size  Metric Buildup Buildup Direct  Buildup  Direct

64 — 128 96 — 128 128 64— 96 96

MSE 0.087 0.041  0.096 0.065  0.109

Small Rel ¢ 0.303 0.207  0.318 0262  0.335
Rel Spec 4 0.132 0.067  0.139 0.099  0.156

MSE 0.064 0.019  0.075 0.040  0.083

Large Rel ¢ 0.259 0.140  0.280 0.203  0.289
Rel Spec ¢, 0.082 0.026  0.091 0.049  0.106

Table 2: Evaluation results from buildup vs. direct experiments. In all metrics, lower is better. The numbers in
the second row of the table heading show the different scales involved in both prediction tasks.

combination produces small improvements in cases with near-scale prediction. We include plots
showing the distribution of values listed in each table as additional results in Appendix [E]

4 CONCLUSION

Our proof of concept experiments in this work illustrate the potential advantages from decomposing
the subgrid forcing problem into one across scales. We see this as an approach which may have
regularization advantages, explicitly representing multiscale aspects of this prediction problem, and
supporting learning in scarce data regimes and better handling underlying uncertainty in this task.

In our continuing work we will further investigate combining these prediction tasks to increase ro-
bustness to perturbations in the downscale predictions and remove the networks’ reliance on an oracle
to provide all inputs. We anticipate that augmentations during training can improve the performance
of the combined experiments. We will further work to quantify regularization benefits from this
approach in limited-data regimes, investigate other ways to structure this multiscale prediction task,
and assess the possibility of incorporating more scale levels and other scale representations.
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A  QUASI-GEOSTROPHIC MODEL

For our experiments we target the two-layer quasi-geostrophic model implemented in PyQG which
is a simplified approximation of fluid dynamics (Abernathey et al.| 2022). This model follows the
evolution of a potential vorticity g, divided into two layers ¢ = [g1,g>]. This system is pseudo-spectral
and has periodic boundaries along the edges of each layer. The evolution of the quantities in Fourier
space (indicated by a hat) is:

94
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where J(A,B) = AyBy, —AyB,, “ssd” is a small scale dissipation, and the quantity v is related to g by:
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The values k are the radial wavenumbers v/k2 + [2 while k and [ are wavenumbers in the zonal and
meridional directions (the axis-aligned directions in our grid), respectively (Ross et al., [2023)).
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We use the “eddy” configuration from |Ross et al.[(2023)) which sets the following values for model
constants:

rek = 5.787 x 1077

5= _oos
H,

B=15x10""

rq = 15000
1

T 2(1+6)

F, =68F

W =L=10°

where Hy, H, are the heights of each of the two layers of ¢ and r; is a deformation radius. For more
information on the model configuration, consult Ross et al.| (2023)) and the documentation for the
PyQG package.

We generate our data at a “true” resolution on a grid of dimension 256 x 256 using the PyQG default
third order Adams-Bashforth method for time stepping. We use a time step of Ar = 3600 generating
86400 steps from which we keep every eighth leaving 10800 per trajectory. Our training set consists
of 100 such trajectories, and our evaluation set contains 10.

Each step produces a ground truth potential vorticity gy, along with a spectral time derivative
9Girue/dt. From these we apply our family of coarsening operators C (described in Appendix
to produce filtered and coarsened values g, £ Cir(gurue) at resolutions of 128 x 128, 96 x 96, and
64 x 64.

For each of these, we recompute spectral time derivatives in a coarsened PyQG model 9§y, /dt, we
pass each time derivative to spatial variables and compute the target forcing for this scale:

aqtrue) _ &‘]h
ot ot~

These forcings—at each of the three scales—along with the high resolution variables are stored in the
training and evaluation sets for each step.

Slr = Clr(

B NETWORK ARCHITECTURE AND TRAINING

We use the feedforward CNN architecture from |Guillaumin & Zannal(2021) without batch norm as
our standard “small” architecture. The “large” size roughly doubles the size of each convolution
kernel. This produces the architectures listed in Table @ We use ReLU activations between each
convolution. Each convolution is performed with periodic padding, matching the boundary conditions
of the system. All convolutions are with bias. The input and output channel counts are determined by
the inputs of the network. Each input and output quantity has two layers, each of which is handled as
a separate channel. These parameters are adjusted for each task to accommodate the inputs and make
the required predictions. We implement our networks with Equinox (Kidger & Garcial [2021).

We train each network with the adabelief optimizer (Zhuang et al.,[2020) following a cosine warmup
learning rate schedule, both implemented in Optax (Babuschkin et al.| |2020). The learning rate
schedule is updated per step and spends one epoch performing a linear ramp up from O to a peak
learning rate, then the remainder of training follows a cosine decay to a final learning rate of 0.
The peak learning rate was 1 x 10~ for the small networks and 2.22 x 10~ for the large networks.
The networks are trained to minimize MSE loss. Large chunks of 10850 steps are sampled with
replacement from the dataset which is pre-shuffled uniformly. Then each of these chunks is shuffied
again and divided into batches of size 256 without replacement. One epoch corresponds to one
expected pass through the data set. We train the small networks for 66 epochs, and the large networks
for 48 epochs. We store the network weights which produced the lowest training set loss and use
these for evaluation.
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Table 4: Architecture specifications for each neural network. Convolution kernel sizes vary between the
architecture sizes. The channel counts are adjusted to accommodate the inputs and outputs of each task.

For all input and target data, we compute empirical means and standard deviations and standardize
the overall distributions by these values before passing them to the network. The means and standard
deviations from the training set are used in evaluation as well.

C COARSENING OPERATORS

In this work we make use of two families of coarsening operators to transform system states across
scales. The first, denoted C, is used when generating our data. This operator is applied to the “true”
resolution system outputs giye and dgime /91 to produce training and evaluation set samples as well
as target forcings S. The second operator D (with associated upscaling D) is applied as a part of
each prediction task to adjust scales around the neural networks as needed. These are the operators
referenced in Figure [T) and Figure 2]

Each of these operators is built around a core spectral truncation operation, D. For an input resolution
hr and an output resolution Ir, this operator truncates the 2D-Fourier spectrum to the wavenumbers
which are resolved at the output resolution, then spatially resamples the resulting signal for the target
size Ir. These operators also apply a scalar multiplication to adjust the range of the coarsened values.
We define a ratio p = hr/Ir.

C.1 DATA FILTERING

The data filtering operator C is “Operator 1" as described in |Ross et al.[(2023). It is a combination of
the truncation operator D with a spectral filter 7

C2p 2. FoD

where the filter 7 acts on the 2D-Fourier spectrum of the truncated value. F is defined in terms of the

radial wavenumber x = Vk2 + [2 where k and [ are the wavenumbers in each of the two dimensions
of the input. For an input ¥ at radial wavenumber x we define:

)= Vi if k < k¢
- _6723.6(K7KC)4Axﬁ if > K¢

where Ax;; = L/Ir (L is a system parameter see Appendixfor details), and k¢ £ (0.657)/Axy; is a
cutoff wavenumber where decay begins.

C.2 RESCALING OPERATOR

For scale manipulations as part of our learned model we make use of a scaled spectral truncation
operator. We define a downscaling operator D as well as an upscaling operator D :
D2p>D and D' 2p*Dl. (7)

Note that D™ is a right side inverse DD+ = I, and that D™ is the pseudoinverse D* = D(DDT)~!
because DDT = I. This operator omits the filtering F performed as part of coarsening operator C to
avoid numerical issues when inverting the additional spectral filtering.
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D EVALUATION METRICS

In this work we consider three metrics for evaluating the quality of network predictions: a mean
squared error (MSE), a relative ¢ loss, and a relative ¢, of the spectra of the predictions. The MSE is
a standard mean squared error evaluated over each sample and averaged. The other two metrics are
derived from |Perezhogin et al.|(2023) (where they were called L and Lg). These were originally
designed to measure performance for stochastic subgrid forcings. Here we use the two metrics from
that work which do not collapse to trivial results for deterministic models.

These metrics are defined as:

_ IS5

sp(S) —sp(S
Rel f2 = = _ Isp(S) —sp(S)ll2

Rel S lh =
e opeet EGIE

where S is the true target forcing, S is a neural network prediction being evaluated, and sp is the
isotropic power spectrum. See calc_ispec in PyQG for calculation details (Abernathey et al., [2022).
Each of these three metrics is averaged across the same batch of 1024 samples selected at random
from the set of held out trajectories in the evaluation set.

and

E ADDITIONAL RESULTS

Figure [3] and Figure [] illustrate the results from the tables in the paper body. They illustrate the
individual MSE evaluation results which are averaged when producing the results in the tables.

We observe relatively high variance in the combined experiments (see Figure ) despite improved
mean performance (as reported in Table[3). We attribute most of this to the fact that each component
network was trained on ground-truth data with no corruption. At evaluation time, the buildup network
is exposed to predicted data from the downscale network and may not handle the resulting errors well.
We anticipate that changes to training, such as the inclusion of simulated noise, should help reduce
the variance we observe here.

XXX XXX
0.10 xX
0.06 i i xxX XXX
XX : : 0.08
X i 3 HED S
& 0.04 : & 0.06 ixX
= XX = X :
: : 0.04 < 5
0.02 3 3 :
5 © % smal 0.02 ; X__Small
: SOKAH Large Large
0.00 20X : 0.00 - , ;
""" Downscale Across Downscale Across Downscale Across Buildup 64-128 Direct 128 Direct 96

128-96 128-64

(a) Downscale vs. across MSE

96-64

Buildup 96-128

(b) Buildup vs. direct MSE

Buildup 64-96

Figure 3: Evaluation results from both experiments for the MSE metric. These are the same numbers which
are reported as averages in Table |I| and Table@ The plot here shows the three samples—one from each trained
network—used to compute the means.
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Figure 4: Evaluation results from the combined experiments for the MSE metric. These are the same values
reported as averages in Table[3] The plot here shows nine samples for the “combined” tests (one for each pairing
of networks) and three for the “direct” experiments used as a baseline.
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