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ABSTRACT

Recently, deep learning has emerged as a promising tool for statistical down-
scaling, the set of methods for generating high-resolution climate fields from
coarse low-resolution variables. Nevertheless, their ability to generalize to cli-
mate change conditions remains questionable, mainly due to the stationarity as-
sumption. We propose deep ensembles as a simple method to improve the uncer-
tainty quantification of statistical downscaling models. By better capturing uncer-
tainty, statistical downscaling models allow for superior planning against extreme
weather events, a source of various negative social and economic impacts. Since
no observational future data exists, we rely on a pseudo reality experiment to as-
sess the suitability of deep ensembles for quantifying the uncertainty of climate
change projections. Deep ensembles allow for a better risk assessment, highly
demanded by sectoral applications to tackle climate change.

1 INTRODUCTION

One of the most popular and extended tools for simulating the spatio-temporal evolution of cli-
mate systems are General Circulation Models (GCMs). Unfortunately, due to the complexity of the
physical processes underlying climate dynamics, they usually incur in a high computational cost,
resulting in coarse resolution climate fields. This hampers their applicability in the regional-to-local
scale, where climate projections are crucial for some sectorial applications to elaborate adaptation
and mitigation plans to climate change.

Statistical Downscaling (SD) (Maraun & Widmann, [2018]) aims to generate high-resolution fields
from coarse climate model outputs by learning a statistical relationship between a set of predictors
(inputs) and predictands (outputs) representing the coarse and high resolution fields, respectively.
Deep learning (DL) techniques (Goodfellow et al.,[2016)) have recently emerged as promising tools
for downscaling coarse climate fields, showing excellent results in reproducing the observed local
climate (Pan et al.,[2019}; | Bafio-Medina et al.,|2020; |Sun & Lan, [2021)).

For SD models to reliably compute high-resolution fields in future scenarios, it is crucial that they
generalize to unseen conditions (stationary assumption), such as those of climate change. Most DL
models adapted to the SD task minimize losses such as the mean squared error, which leads models
to fit the mean of the training data, no providing information about the confidence in their pre-
dictions. Taking this uncertainty into account is extremely important when applying these models
to future scenarios influenced by climate change, where the stationarity assumption may be vio-
lated. Also, being able to capture extremes is key for planning against extreme weather events (e.g.,
droughts, heat waves, extreme heat) whose frequency is expected to grow due to climate change. By
improving the modeling of the uncertainty of SD models we can better capture these events when
downscaling climate fields under climate change conditions.

To quantify uncertainty in SD, in (Bano-Medina et al., 2020) authors model the parameters of a
distribution over each gridpoint of the downscaled field, relying on information about the climate
variable to choose the appropriate distribution (e.g., Gaussian for temperature). Subsequent work



(Quesada-Chacén et al., 2022) follows the same procedure as a way to improve the distributional
properties of the predictions. In (Vandal et al.| 2018)) authors rely on Monte Carlo Dropout (Gal &
Ghahramani|, 2016)), an approximation to Bayesian inference through the use of dropout at test time,
to quantify uncertainty in the downscaling of precipitation, obtaining acceptable results. Recently,
several works explore generative modeling for the statistical downscaling task (Price & Raspl 2022}
Harris et al.l 2022 |Accarino et al.l |2021), obtaining benefits from its stochastic properties. Among
these works, only (Bafio-Medina et al., |2022)) quantifies the uncertainty in climate change projec-
tions.

A simpler way to achieve uncertainty quantification is through deep ensembles. It consists of training
several models in parallel on the same data and then combining the predictions through an aggre-
gation operation (e.g. mean), which generally improves performance compared to a single model
(Dietterich, |2000). In (Lakshminarayanan et al.,|2017) authors show how this technique also allows
for a better predictive uncertainty estimates, however, its application to SD has not yet been studied.
In this work we explore a natural extension of (Bano-Medina et al., 2020) through the use of deep
ensembles, a simple technique that does not require tuning hyperparameters or modifying the model
topology. This leads to a better quantification of uncertainty of climate change projections in future
scenarios.

2 EXPERIMENTAL FRAMEWORK

Due to the lack of observations in future periods, we rely on a pseudo reality experiment to eval-
uate the effectiveness of deep ensembles for SD. This experiment is necessary if we need to re-
veal whether the relationship learned in a historical period is able to extrapolate to future scenarios
(Maraun & Widmann, 2018). We use the regional climate model (RCM) CanRCM4 (Scinocca
et al.,|2016) as pseudo observations (predictand) and its driving GCM (CanESM2) (Chylek et al.,
2011) as predictor. This RCM is part of the Coordinated Regional Climate Downscaling Experiment
(CORDE initiative, which provides multi-model ensembles of RCMs at the continental level. In
addition, the chosen RCM rely on spectral nudging (von Storch et al., [2000), a technique used to
improve the day-to-day correspondence of dynamical downscaling models (Maraun & Widmann),
2018)).

We rely on the DeepESD convolutional model introduced in (Bafio-Medina et al. |2020; 2022)) to
downscale temperature, which has demonstrated the ability to accurately reproduce the local climate.
It is composed of three convolutional layers with 50, 25 and 10 kernels (with ReLU activations). The
output of the last convolutional layer is flattened and passed to a dense linear layer to compute the
© and o vectors, containing the parameters of the corresponding Gaussian distribution for each
gridpoint of the predictand. As a result, the neural network defines a mapping [u, 0] = f*(x)
(parameterized by w), where z is the input of the model, in our case the CanESM2 predictors.

We follow previous work (Bano-Medina et al., 2020) and select as predictors 3 large-scale variables
(geopotential height, air temperature and specific humidity) at 4 different vertical levels (500, 750,
800 and 1000 hPa) from CanESM?2 (2.8125° resolution). These variables have been shown to be
adequate drivers of local temperature (Maraun et al., 2019; |Gutiérrez et al., 2013} |Gonzalez- Abad
et al.,|2022). For the target predictand, we lean on the near-surface air temperature of CanRCM4
(0.22° resolution), which justifies modeling the parameters of a Gaussian distribution. As region to
perform the experiment, we select a western area of United States (25° to 55° in latitude and -135°
to -100° in longitude).

The DeepESD model is fitted in a training set spanned by the years 1980-2002 by minimizing
the negative log likelihood (NLL) of a Gaussian distribution at each predictand gridpoint. To avoid
overfitting, we follow an early stopping strategy on a random 10% split of the training set. Following
previous work (Bano-Medina et al.,2021;|2022)), the evaluation of these models is performed in three
different future periods (2006-2040, 2041-2070 and 2071-2100). Predictors are scaled at gridpoint
level, taking as reference the mean and standard deviation computed over the training set.

For the ensemble, we train 10 different models in parallel, following the procedure described in the
previous paragraph. To aggregate the models we follow (Lakshminarayanan et al.| [2017), so the
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mean and variance of the final ensemble are given by

pa) = 22 S h0, (@) 02a) = 2 S0 + 4 ) — () m

m

where M is the number of models composing the ensemble and 119, (x) and o2, () are the mean
and variance of the m ensemble member.

3 RESULTS

Figure [I] shows the RCM target values (in red), as well as the prediction (in blue) from DeepESD
and the DeepESD Ensemble for the year 2100. For the prediction, the mean and the 95% confidence
interval are plotted. The displayed time series correspond to the gridpoint indicated with a green
point in the upper-left figure, which represents the climatology of the RCM in the historical period.
For each of the models, a time series of the August and February months is also depicted. As
long as the RCM target value falls within the interval confidence it means that the model is able
to account for the uncertainty of that given value, otherwise it fails to do so. As we can see in the
climatology plot, the selected point falls into an area with warm temperatures. Overall, DeepESD
model fits RCM temperature accurately, however for the warmer months (June, July and August) we
can observe how the mean is biased toward lower values. If we turn our attention to August, we can
observe how, besides a biased mean, the confidence interval is not able to capture the RCM values.
This is not the case for winter months (e.g. February), where we see how the mean is not biased, and
the confidence interval accurately captures the RCM values. The DeepESD Ensemble models does
not suffer from this bias in the warmer months, moreover, we can see how in August the confidence
interval is able to capture most of the values. For February, the performance of DeepESD Ensemble
is similar to that of DeepESD.
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Figure 1: Mean and 95% confidence intervals of the DeepESD and DeepESD Ensemble models
for the predicted near-surface air temperature (in blue) of the year 2100. These are compared with
the corresponding RCM target values (in red). In addition, for each model, an enlarged plot of the
months of August and February is shown. The climatology of the historical period (1970-2005) for
the RCM is also shown (upper-left corner). This map shows the gridpoint to which the time series
belongs (green point).

To better understand the advantages of deep ensembles in both mean and uncertainty quantification,
we display in Figure 2] the spatially averaged Root Mean Square Error (RMSE) and the ratio of the
target RCM values falling within the 95% confidence interval for the three future periods (2006-
2040, 2041-2070 and 2071-2100). We focus only on summer days, since it is on these days that
DeepESD and DeepESD Ensemble disagree the most (see Figure [TI). RMSE values are higher as
we move forward in time. The improvement caused by adding models to the ensemble stops around
3-4 models. This improvement is higher as we move forward in time, from almost no improvement



in the 2006-2040 period to a 0.1° improvement for 2071-2100. A similar behaviour is observed for
the ratios of target samples within the 95 % confidence interval. In this case, the improvement also
gets larger as we move forward in time. For this metric, DeepESD Ensemble benefits from a higher
number of models in the ensemble (around 5-6).
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Figure 2: Spatial mean of RMSE and ratio of target samples within the predicted 95% confidence
interval for summer days for the three intervals considered (2006-2040, 2041-2070 and 2071-2100),
with respect to the number of models composing the ensemble.

Figure [3] shows the same ratio over the summer days but without spatially averaging, that is the
value for each gridpoint of the predictand. These are displayed for the two models (DeepESD and
DeepESD Ensemble) in rows and for the three different intervals (2006-2040, 2041-2070 and 2071-
2100), in columns. We can see how the difference between the two models is remarkable, especially
as we move forward in time, going from an average 4% improvement to an 11%. Most of the
improvements occur at land-based gridpoints. Some areas of the North Pacific Ocean still do no
benefit from the deep ensembles.
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Figure 3: Ratio of RCM target values within the predicted 95% confidence interval for summer
days for the three intervals considered (2006-2040, 2041-2070 and 2071-2100) in columns, for the
DeepESD and DeepESD Ensemble models in rows. The number in each panel represents the spatial
mean.

4 CONCLUSION

In this work we have extended previous work on SD by focusing on a better uncertainty quantifi-
cation in order to capture the uncertainty of climate change projections. To achieve this, we rely
on deep ensembles, a technique that showed improved performance in the quantification of uncer-
tainty. For the first time we study the effect of this simple technique in SD, and find that it provides
improvements in the predicted confidence interval, especially in future scenarios with unseen con-
ditions.



Both models are able to model the uncertainty for the cold months, however for the warmer months
(summer) DeepESD is biased, underestimating and therefore failing to capture much of these values.
However, the DeepESD Ensemble manages to fit the mean of the RCM, capturing a large part of the
positive RCM values due to its improved confidence interval. This becomes clearer when studying
the RMSE and the ratio on summer days. We see how the ensemble brings considerable advantages,
especially when we move forward in time, where we expect to find an upward trend in temperature
due to climate change and therefore warmer extremes.

In climate change scenarios, quantifying uncertainty is extremely important since it helps us to better
capture extreme weather events, especially under climate change conditions, where their intensity
and frequency are expected to worsen. Deep ensembles appear to be a natural and straightforward
extension of current methods for modeling uncertainty, thus helping SD to better tackle climate
change. In this work we validate this technique in a pseudo reality experiment, in future work we
plan to apply it directly to SD and study its benefits in a real-case scenario. Additionally, we plan to
extend this study to other climate fields, such as precipitation.
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