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ABSTRACT

Stagnant weather condition is one of the major contributors to air pollution as it
is favorable for the formation and accumulation of pollutants. To measure the at-
mosphere’s ability to dilute air pollutants, Air Stagnation Index (ASI) has been
introduced as an important meteorological index. Therefore, making long-lead
ASI forecasts is vital to make plans in advance for air quality management. In
this study, we found that autumn Nifio indices derived from sea surface tempera-
ture (SST) anomalies show a negative correlation with wintertime ASI in southern
China, offering prospects for a prewinter forecast. We developed an LSTM-based
model to predict the future wintertime ASI. Results demonstrated that multivariate
inputs (past ASI and Nifio indices) achieve better forecast performance than uni-
variate input (only past ASI). The model achieves a correlation coefficient of 0.778
between the actual and predicted ASI, exhibiting a high degree of consistency.

1 INTRODUCTION

Air pollution has become a focus problem which various countries are concerned about. The growth
of atmospheric contaminants damages vegetation and crops and even is highly related to some se-
rious human health diseases (Kampa & Castanas| [2008} |Al-Saadi et al., 2005; Bai et al., 2018;
Masood & Ahmad, |2021). Apart from direct emissions of air pollutants, meteorological conditions
are also important to the accumulation and dispersion of pollutants. Air stagnation occurs usually
with descending air, low wind speeds, low precipitation, and the compressed boundary layer, which
is favorable for the formation and accumulation of atmospheric contaminants (Wu et al., 2017; Gao
et al.,[2019). Hence, the Air Stagnation Index (ASI) has been proposed to assess the atmosphere’s
ability to dilute air pollutants (Horton et al., 2012} 2014} [Huang et al.| 2018)). Studies have shown
that air stagnation highly correlates with the concentrations of air pollutants (Liao et al., 2006}
Huang et al.| |2018)). Therefore, accurate forecasts of ASI are important and valuable for managing
air quality and enabling advance planning.

However, most existing works usually forecast the next several hours or days of air pollution levels
in advance by using common meteorological variables (e.g., wind speed, wind direction, humidity,
temperature, and rainfall), ground-level observations, and satellite data, etc (Al-Saadi et al., 2005}
Bai et al., 2018 |L1 et al., 201 1; |[Harishkumar et al., |2020; Ham et al.| 2019; [Chae et al.| 2021} Zhang
et al.,[2020; [Xiao et al.,|2020; |(Chen et al., 2021} Kurt & Oktay,[2010; Ham et al.|[2021}; |Chang et al.,
2020; 'Wu & Lin, [2019). At present, long-lead seasonal or multi-year air pollution forecasts are still
under exploration, because the ability of long-lead forecasts is highly dependent on finding strongly
correlated climate factors and appropriate forecast algorithms. Previous studies have linked the
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Figure 1: (a) Multi-year (1950-2020) wintertime monthly mean (From December of one year to
February of the following year) ASI distribution across China. (b) Correlation coefficients between
autumn Nifio 3.4 and wintertime ASI over China, where black dots denote significance (p <0.05).

long-lead El Nifio/Southern Oscillation (ENSO) (Ham et al.l[2019;2021), Indian wintertime aerosol
pollution (Gao et al.|[2019) and wintertime PMs_ 5 concentrations over East Asia (Jeong et al., 2021)
with ocean memory effects. They are based on the fact that sea surface temperatures (SST) vary
slowly and the presence of decadal oceanic variations as well as their coupling to the atmosphere
would modulate the interannual variability of climate change and air pollution. Given these linkages,
we aim to investigate the relationship between ocean memory effects and ASI forecasts.

Contributions We first use the meteorological variables from the ERAS5 reanalysis dataset (Hers-
bach et al.| 2020) to generate a long-term ASI dataset over China during a long period from 1950 to
2020. To investigate the feasibility of long-lead ASI forecasts, we analyze the correlations between
ASI and ENSO-related indices (Nifio 1+2, Nifio 3, Nifio 3.4, Nifio 4) calculated from SST anoma-
lies. The correlation map shows that Nifio indices are negatively associated with seasonal variations
of ASI in southern China. Furthermore, we develop the Long Short-Term Memory (LSTM) using
Nifo indices as predictors to obtain skillful long-lead forecasts of wintertime ASI.

Pathways to Climate Impact We show the statistical predictability of wintertime ASI in southern
China using machine learning with ocean memory effects as predictors. Our encouraging results
suggest that SST patterns play an important role in long-lead forecasts of wintertime ASI, which is
useful for analyzing the impact of climate patterns on air pollution.

2 METHODOLOGY

Data There is no available ready-made ASI dataset across China, so we first generate a long-term
ASI dataset during the period of 1950 to 2020 using the meteorological variables from ERAS reanal-
ysis dataset (Hersbach et al., [2020). Following the computation process of ASI in (Garrido-Perez
et al., 2021), we downloaded these meteorological variables from the ERAS reanalysis dataset, in-
cluding convective available potential energy, boundary layer height, convective inhibition, daily
wind speed at different heights, and daily accumulated precipitation, etc, to compute the ASI across
China. According to the definitions in (Garrido-Perez et al, [2021)), we determine whether air stag-
nation occurs by judging whether the meteorological condition meets some predefined thresholds of
daily meteorological fields. Hence, ASI on one day is a binary value, i.e. stagnant/non-stagnant, and
the monthly average ASI can be easily obtained by accumulating the values of ASI in one month. A
long-term ASI dataset is finally generated and we display the multi-year wintertime monthly mean
ASI distribution across China in Figure |I| (a).

Four ENSO-related indices: Nifio 1+2, Nifio 3, Nifio 3.4, and Nifio 4, derived from SST anomalies
are downloaded from https://www.cpc.ncep.noaa.gov/data/indices/. To prove
the feasibility of predicting wintertime ASI using Nifio indices, we need to investigate the rela-
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Figure 2: Correlation skills of using the univariate (past ASI) and multivariate (past ASI plus Nifo
indices) predictors as inputs of the LSTM-based model, (a) the length of input sequences is 3; (b)
the length of input sequences is 6.

tionships between them before constructing a forecast model. More specifically, we calculate the
Pearson correlation coefficients between wintertime ASI across China and autumn Nifio indices.
Figure[T](b) shows the correlation coefficient map where black dots mean statistically significant re-
lationships. It is observed that autumn Nifio 3.4 index shows strong negative correlations with win-
tertime ASI in southern China. The negative correlations between Nifio 3.4 index and air pollution
in southern China have also been discussed in (Zhao et al., [2018}; |Cheng et al.,|2019)). Therefore, we
select the statistically significant region, i.e., seven provinces in southern China, including Guizhou,
Hunan, Jiangxi, Fujian, Zhejiang, Guangxi, and Guangdong. Then we calculate the average monthly
ASI of this region and obtain the spatially average wintertime ASI time-series data. The Pearson
correlation coefficients between this ASI time-series data and autumn Nifio 1+2, Nifio 3, Nifio 3.4,
and Nifio 4 are -0.42, -0.50, -0.46, and -0.53, respectively. These correlations suggest that making
seasonal or even interannual predictions of wintertime ASI is possible.

Model and Experimental Setup We develop a forecast model by exploiting the LSTM cell which
is good at capturing the long-term dependency of time-series data (Hochreiter & Schmidhuber;,
1997). This LSTM-based model is composed of one input layer, two-layer LSTMs (each LSTM
layer with 32 hidden states), and one output layer. To explore the effects of September-October-
November (SON) Nifio indices on foreseeing future December—January—February (DJF) ASI over
southern China, we make comparisons between univariate input and multivariate inputs. The uni-
variate input refers to past DJF ASI, while multivariate inputs refer to past DJF ASI plus SON Nifio
indices. The input sequence length is denoted as &, which means the input sequence from time
7 — k + 1 months to time 7 (in months). The output layer is a fully connected (FC) layer whose
variable is the future ASI at time ¢ ({ >= 7 + 1). The training period is from 1950 to 1999 used to
train the LSTM model and the period for validating the forecast skill is from 2000 to 2020. Adam
optimizer (Kingma & Bal [2014) with a learning rate of 0.001 and 0.01 is used for univariate and
multivariate inputs respectively, and mean-squared error (MSE) is chosen as our loss function.
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Figure 3: Time series of the true and the predicted DJF ASI in southern China: using univariate
input with a sequence length of 6 (a) or 9 (c); using multivariate inputs with a sequence length of 6
(b) or 9 (d).

3 EXPERIMENTS

Evaluation To evaluate the forecast skill of the LSTM-based model, we adopt the temporal
anomaly correlation coefficient C' in (Ham et al.,[2019). C'is a function of the forecast lead months
and measures the linear correlation between the actual and the predicted values. In addition, we also
use Pearson correlation coefficients (Corr) and Mean absolute percentage error (MAPE) to compare
the true and the predicted time series during the validating period.

Results Figure [2] shows the correlation skill of the LSTM-based model at lead times of 10, 20,
and 30 months (the first, second, and third row) using the univariate (blue line) and multivariate
inputs (orange line) with the input sequence length of 3 (a) and 6 (b) respectively. Both curves of
univariate and multivariate inputs in Figure [2] show a downward trend along with increasing lead
time, which is reasonable. Figure[2](a) indicates that multivariate inputs achieve significantly better
forecast skills than univariate input at lead times of 10, 20, and 30 months (both lines almost above
0.5), while Figure[2](b) shows the univariate input can achieve an approximate forecast performance
to multivariate inputs when the input sequence length is 6. Nifio indices have been proven to be
beneficial to improve the forecast ability of wintertime ASI when the input sequence length is short.

Furthermore, Figure [3] shows the true and predicted DJF ASI during the validation period using
univariate and multivariate inputs with different input sequence lengths. We can observe that mul-
tivariate inputs achieve higher correlation coefficients and lower MAPE than univariate input under
the same sequence length by comparing FigureEl (a) and (b), (c) and (d). Finally, multivariate in-
puts with a sequence length of 9 achieve the best predictive performance with a high correlation
coefficient of 0.778 and a low MAPE of 0.143.
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4 CONCLUSION AND FUTURE WORK

In this work, we have explored leveraging ocean memory effects to achieve long-lead forecasts of
wintertime ASI. We first find negative correlations between autumn Nifio indices and wintertime ASI
in southern China, indicating the prospects for a prewinter forecast. Based on these correlations, an
LSTM-based forecast model has been developed. Experimental results show that Nifio indices are
beneficial to help improve the forecast performance of wintertime ASI, especially when the input
sequence is short. In future work, we will conduct more investigations: (1) try more powerful
machine learning models, such as Transformer and ConvLSTMs, to further enhance the prediction
accuracy; (2) directly use SST anomalies as predictors which may provide global and more useful
information for long-lead forecasts.
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