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ABSTRACT

Renewable energy such as solar power is critical to fight the ever more serious cli-
mate, how to effectively detect renewable energy has became an important issue
for governments. In this paper, we proposed a deep learning framework named So-
larNet which is designed to perform semantic segmentation on large scale satellite
imagery data to detect solar farms. SolarNet has successfully mapped 439 so-
lar farms in China, covering near 2000 square kilometers, equivalent to the size
of whole Shenzhen city or two and a half of New York city. To the best of our
knowledge, it is the first time that we used deep learning to reveal the locations
and sizes of solar farms in China, which could provide insights for solar power
companies, climate finance and markets.

1 INTRODUCTION

While climate change has become one of greatest threats to our world, renewable energy such as
solar power is critical to fight climate change(Chu & Majumdar, 2012; Agnew & Dargusch, 2015).
China, as the world’s leading installer of solar photovoltaics (PV), is the world’s largest producer
of solar PV power and massive solar farms were built not only to produce clean energy but also to
reduce poverty.

However, one question remains to be answered: where are those solar farms located? Mapping
the location of solar farms and tracking its installation progress is particularly important for the
following aspects: first, it allows the government to gauge the development of solar power industry
and make strategies; second, it helps the solar power company to quantify and optimize the efficiency
of solar panels; third, it is useful for investors to evaluate the operation of solar power companies.
Obviously, it is impractical to locate solar farms with maps manually. Most recently, more and more
companies have launched satellites into space, produced massive satellite imagery data and therefore
accelerated its commercialization in various fields.

In this paper, we proposed a deep learning framework named SolarNet, which is used to analyze
large-scale high-resolution satellite imagery data and is able to accurately identify hundreds visible
large solar farms in China while many of those are built in deserts, mountains and even lakes. To
the best of our knowledge, it is the first time that the locations and sizes of solar farms in China are
tracked by mining satellite imagery data through deep learning algorithms.

2 RELATED WORKS

In this section, we give a brief review of related works, including semantic segmentation and solar
panel detection.

Semantic Segmentation: In order to evaluate the use of solar energy, we need to use segmenta-
tion algorithms to evaluate the construction of solar power stations. If we can segment the area of
the solar power board, we can estimate its power generation. Semantic segmentation(Long et al.,
2015) is an important computer vision technique that has been widely applied to detect objects from
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remote sensing imagery data, such as urban architectural segmentation(Wei et al., 2004; Bischke
et al., 2019), road extraction(Mokhtarzade & Zoej, 2007), crop segmentation(Rydberg & Borgefors,
2001), etc. Deep learning has achieved great success in semantic segmentation task(Long et al.,
2015).

However, compared with natural images, segmentation on satellite imagery data is much more chal-
lenging due to: 1) the resolution of different satellite may vary, 2) the size of satellite is huge which
may lead to huge computational cost, 3) the background, cloud, reflection of sunshine etc. could
also complicate the segmentation tasks, 4)the texture of solar panels may also vary due to various
sensor specs.

Solar Panel Detection: Most recently, Yu et al.(Yu et al., 2018) proposed a framework called Deep-
Solar which successfully located the civil solar panels in the United States and developed a public
data set. Their data set mainly focused on household solar power planes in the US, by contrast, most
of the large solar power plants in China were built in the fields with complex background such as
deserts, mountains and even lakes as shown in Figure 1, which pose more challenges to the detec-
tion task. In order to fully evaluate the proposed segmentation method, we also particularly created
a satellite imagery data set of the solar plants in China to train our model.

(a) DESERTS (b) MOUNTAINS (c) LAKES

Figure 1: Part of solar farms in China. (a). solar power plants in the deserts, (b). solar power
plants in the mountains, (c). solar power plants in the lakes. All these images contain complex
backgrounds.

.

3 METHOD

SolarNet is a semantic segmentation method based on the combination of Expectation-Maximization
Attention Unit(EMAU) and multitask optimization. In order to compare the performance, we used
UNet as a baseline algorithm, which is one of most popular deep learning based semantic segmen-
tation methods.

3.1 UNET

UNet is composed of multiple layers convolution and deconvolution. This architecture can produce
a prediction for each pixel, while retaining the spatial information in the original input image. The
UNet was first proposed by (Ronneberger et al., 2015), is used as a baseline model and the net
architecture is illustrated in Figure 2.

Figure 2: UNet Architecture.
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3.2 SOLARNET: A MULTITASK EXPECTATION-MAXIMIZATION ATTENTION NETWORKS

EMAU: One shortcoming of UNet segmentation structure is that its multiple local convolution oper-
ations is not able to capture sufficient global information, and thus harms the performance in discon-
tinuous object segmentation. Inspired by Xia’s work(Li et al., 2019), they poposed the Expectation-
Maximization Attention Unit(EMAU) module, which replaced the local convolution operation with
the global unsupervised clustering EM algorithm in the feature extraction process, thus could effec-
tively captures the global information. In our case, the solar power plants usually scatter in various
discontinuous areas as shown in Figure 3, and EMAU moudle is able to deal with such case.

Figure 3: When performing convolution operation, each convolution operator only extracts the local
spatial features. The EMAU module performs clustering operation of element wise, and could
capture more the global information in space.

Multitask Optimization: Besides, we proposed an optimized multitask-EMANet, which combines
local pixel-level segmentation and global image-level classification. Many existing studies(Zhou
et al., 2016; Le et al., 2019) show that the feature map of classification network usually corresponds
the area of the object to be segmented, which could improve the segmentation performance.

Figure 4: SolarNet Architecture: in addition to the EMA operator, two 1 × 1 convolutions at the
beginning and the end of EMA, sum the output with original input, to form a residual-like block.

The proposed SolarNet complete architecture is shown in Figure 4, it used pretrained ResNet-101
as backbone(He et al., 2016) and the EMAU module to extract features. After re-configuring the
features of EMAU module, the feature of ResNet-101 were then summed together and the last
summed one was used to the last segmentation task. SolarNet adopted the classification network
to further enhance the segmentation results. Meanwhile, the classification network shares the same
weight with segmentation network, and the final layer is a fully connected layer which is used to
classify whether contains the solar planes or not. More detailed structure and training process have
been described in appenidx section.
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4 RESULTS AND CONCLUSION

Results: We used the trained SolarNet framework to map all the solar farms in China by mining
large scale satellite imagery data that covered the whole China. We successfully detected about 500
solar farms covering the area of 2000 square kilometers or 770 square miles in total, equivalent to
the size of whole Shenzhen city or two and a half or New York city. Figure 5 visualized the locations
of all detected solar farms in China marked by blue dots. One can see that most of the solar farms
were built in the northwestern part of China where the sunlight is abundant and thus is ideal for
solar power. Among all the provinces in China, Qinghai has installed the most solar farms with the
area of near 400 square kilometers in total as shown in Figure 8. One can also visit our website
ms.webank.com/moonshot-demo/solarnet-beta.html to interact with the results.

Figure 5: Solar farm map in China. Each blue dot indicates a detected solar farm from satellite
imagery. We colored each province according to the area of solar farms (darker color indicates
larger areas). A heat map of solar farm density was also overlaid. Eight representative solar farms
built on deserts, mountains, lakes or the fields were also displayed.

We then used mean Intersection over Union (mIoU) as the criteria to evaluate segmentation perfor-
mance and compared the SolarNet with two other methods in three kinds of dataset. Our dataset
include 938 images, deepsolar dataset(Yu et al., 2018) include 1555 images. The results in Table 1
shows that the SolarNet outperformed two others.

Model mIOU
our dataset deepsolar dataset our+deepsolar dataset

Resnet101-Unet 84.65% 84.22% 86.54%
Resnet101-EMANet-single 94.00% 90.98% 93.79%

SolarNet-Multitask-1.0 94.21% 90.39% 93.94%

Table 1: With the multi-task embedding, SolarNet could beat the orignal EMANet and UNET on
our dataset evaluation.

Conclusion: Mapping and tracking the installment of solar panel from satellite imagery data is po-
tentially helpful for the following fields: 1) it could help the solar PV power company to optimize the
location and direction of solar panels so that to maximize the production of such renewable energy;
2) it could help the investors and market researchers to track the latest trends of solar PV power; 3)
government could use our result to evaluate the efficiency of regarding policies, for example, how
the subsidiary policy is impacting the development of solar power industry. Therefore, we plan to
build a Solar Power Index in China by analyzing longer historical satellite imagery data with Solar-
Net so that we could track long term trends. And we also plan to apply the proposed framework to
map the location and develop the index of other type of renewable energy such wind turbine.
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5 APPENDIX

UNET architecture:The network architecture is described in detail in Table 2. It has tow parts:
a contracting path and an expansive path. The contracting path follows the typical architecture of
a convolutional network. we uses two repeated convolutions with 3×3 kernerl size, while each is
followed by a batch normalization layer and a rectified linear unit, then a 2x2 max pooling operation
with stride 2 for downsampling. At each downsampling step we made the number of feature chan-
nels becomes to double times. In the expansive process every step consists of upsampling feature
map followed by a 2x2 convolution that halves the number of feature channels, a concatenation with
the correspondingly cropped feature map from the contracting path, and two 3x3 convolutions, each
followed by a BN layer and a ReLU layer. In the final layer, a 1x1 convolution is used to map each
2-component feature vector to the desired number of classes whether this pixel is solar panel or not.
The network has 17 convolutional layers in total.

INPUT
3x3 conv 64 dim→ 3x3 conv 64 dim→ pooling→ BN & RELU
3x3 conv 128 dim→ 3x3 conv 128 dim→ pooling→ BN & RELU
3x3 conv 256 dim→ 3x3 conv 256 dim→ pooling→ BN & RELU
3x3 conv 512 dim→ 3x3 conv 512 dim→ pooling→ BN & RELU
3x3 conv 512 dim→ 3x3 conv 512 dim→ upsampling→ BN & RELU
3x3 conv 256 dim→ 3x3 conv 256 dim→ upsampling→ BN & RELU
3x3 conv 128 dim→ 3x3 conv 128 dim→ upsampling→ BN & RELU
3x3 conv 64 dim→ 3x3 conv 64 dim→ upsampling→ BN & RELU

1x1 conv 2 dim → SoftMax

Table 2: UNet architecture detail

EMAU module: Attention mechanism have been widely used for various tasks. The proposed
Expectation-Maximization Attention (EMA) module (Li et al., 2019) is robust with regard to the
variance of input and is also efficient in terms of memory and computational power(Wang et al.,
2018). For a simple introudction, we consider an input feature map X of size C × H ×W from
a single image. X was the intermediate activated feature map of a CNN. We reshaped X into
N × C, where N = H ×W . Briefly, given the input X ∈ RN×C , the initial bases µ ∈ RK×C

and Z ∈ RN×N are the latent variables. The E-step is used to estimates the latent variables Z,
and then used the M-step updated bases µ. After T times iteration, we reconstruct the X̂ since
K << N , X̂ lies in a subspace of X . This method removes much unnecessary noise and makes the
final classification of each pixel more segmentable. Moreover, this operation reduces the complexity
from O(N2) to O(NK) in the pixel segmentation process.

E-step:

znk =
κ(xn, µk)∑K
j=1 κ(xn, µj)

(1)

where κ represents the general kernel function, we simply take the exponential inner dot exp(aT , b)
in our implementation.

M-step:

µtk =
ztnkXn∑N
m=1 z

t
mk

(2)

Multitask Optimization: we used this formulaton to get the overall loss:
Losstotal = λ · Losscls + (1− λ) · Lossseg
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Implementation of training details: When training the model, we also adopted adam gradient
descent method(Burges et al., 2005; Dozat, 2016). In order to fully incorporate the EMAU’s into
deep neural networks, we here describe how to train EMAU in each iteration. As each image X has
different pixel feature distributions compared to others, using the µ to reconstruct feature maps of a
new image is not suitable. So we need to run EMAU moudle on each image simultaneously. For the
first mini-batch, the Kaiming’s initialization(He et al., 2015) has been used to initialize µ0 , where
the matrix multiplication can be treadted as a 1× 1 convolution. For the following batches, we can
simple used back propagation to update µ0 by standard. However, since iterations of E-step and
M-step can be expanded as a recurrent neural network (RNN) (Mikolov et al., 2010), the gradients
propagating though them will generate the vanishing or explosion problem. Therefore, the updating
of µ0 is unstable, moving averaging(Dandawate & Giannakis, 1995) has been used to update µ0 in
the training process. After several iterations over an image, the generated µT can be considered as a
biased update of µ0, where the bias comes from the image sampling process: µ0 = αµ0+(1−α)µT
2058 images were used to train the mode while 435 images were used to test the model. The size of
all the images ranges from 512 × 512 to 10000 × 10000. In order the create more dataste to train
the model, we adopted the following data augmentation methods:

• Crop: Choosed a random ROI area from a original image: Xarg = ROI(X).

• Scale: Choosed a random scale size s ∈ (0.8, 1.2), rescaled the original image: Xarg =
Rescale(X, s)

• Rotation: Choosed a random angle θ ∈ (−180, 180), rotated the orignal image:Xarg =
Rotate(X, θ)

• Reflection: Flipped the original image horizontally: Xarg = FlipH(X), or flipped the
original image vertically: Xarg = FlipV (X)

Parameter Learning Rate Iteration Training Set Testing Set
Value 1e−3 20000 819 119

Parameter EM Iteration EM Latent Variables Size
Value 10 1024

Table 3: Parameters of SolarNet to train the model.

The pseudo code of the training process of SolarNet is shown in Algorithm 1. It is important to note
that in each iteration a semi-supervised clustering process of T-round EMAU module is required.
And in the test process, each image was performed a clustering process with T-round iteration.

Experimental details:

8



Published as a conference paper at ICLR 2020

(a) ORIGINAL
IMAGERY

(b) UNET SEGMEN-
TATION

(c) SOLARNET SEG-
MENTATION

(d) GROUND
TRUTH

Figure 6: Solar farms located by SolarNet. The first column is the orignal satellite imagery data. The
blue area indicates the detected solar farms by UNet (second column) and EMANet (third column)
and red area in the fourth column indicates the ground-truth labeled manually. One can see how
SolarNet was able to accurately detect solar farms under very complicated backgrounds.

.
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(a) ORIGINAL IMAGERY (b) SOLARNET SEGMENTATION

Figure 7: Two massive animal-shaped (horse and panda) solar farms detected by SolarNet.

Figure 8: The area of detected solar farms in various provinces in China (unit: km2)

SolarNet may fail to detect the solar farms when the it resembles its surrounding background as
shown in Figure 9. In the future, we plan to improve our methods in the following way:

1) Labeling more solar panels from the satellite imagery data in various circumstances, such
as the solar panels on the roof in residential areas.

2) Adapting SolarNet to handle the satellite imagery data with various resolutions Benz et al.
(2004). For example, HRNet proposed by Sun et al. (2019) is an effective super-resolution
method to deal with various resolution images.
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3) Using hyperspectral imagery data to enhance the segmentation performance. As showed
in Alexakis et al. (2009); Arellano et al. (2015) could provide more information when
detecting objects from satellite.

(a) ORIGINAL IMAGERY (b) SOLARNET SEGMENTA-
TION

(c) GROUND TRUTH

Figure 9: SolarNet may fail to detect the solar farm when it resembles its surrounding environment.
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Algorithm 1 SolarNet Training Procedure

Initial: Random Initial network’s weights: W0

Input: Original Satellite Imagery: X
Semantic Segmentation Imagery: Xs

Whether it contains solar panels: Y
Procedure:

1: function ESTEP(µ,X)
2: return znk = κ(xn,µk)∑K

j=1 κ(xn,µj)

3: end function
4: function MSTEP(Z,X)
5: return µtk =

ztnkXn∑N
m=1 z

t
mk

6: end function
7: for i = 0→MaxIter do
8: Xres = ResNet(X)
9: Logit = Cls(Xres)

10: Lcls = CrossEntropy(Logit, Y )
11: Random initial µ0

12: Z0 = ESTEP(µ0, Xres)
13: for t = 0→ T do
14: ut = MSTEP(Zt, Xres)
15: Zt+1 = ESTEP(µt, Xres)
16: end for
17: X̃ = Zt · µt
18: Lseg = CrossEntropy(X̃,Xs)
19: Ltotal = λ · Lcls + (1− λ) · Lseg
20: Wi+1 =Wi +

∂Ltotal

∂Wi

21: end for
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