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ABSTRACT

Developed countries must make swift movements toward plant-based diets in or-
der to mitigate climate change and maintain food security. However, researchers
currently lack clear insight into the psychological dimensions that influence food
choice, which is necessary to encourage the societal adaptation of new diets. In
this project, we use Skip-gram word embeddings trained on the ukWaC corpus
as a lens to study the implicit mental representations people have of foods. Our
data-driven insights expand on findings from traditional, interview-based studies
by uncovering implicit mental representations, allowing a better understanding the
complex combination of conscious and sub-conscious processes surrounding food
choice. In particular, our findings shed light on the pervasiveness of meat as the
‘centre’ of the meal in the UK.

1 INTRODUCTION

According to current projections, by 2050, the emissions budget available per capita under the
IPCC’s 1.5° C target will be swallowed entirely by diets high in ruminant animals (Ritchie et al.,
2018). Dietary change will be forced by environmental and economic factors, and the food equity
gap will widen (Garnettl, [2013), meaning the developed world must adapt diets compatible with a
“1.5° world” (Schleusnner et al., [2016| p.832). However, by definition, ‘sustainable diets’ must not
only have low environmental impacts, but be nutritionally complete, economically accessible, and
culturally sensitive if they are to be widely adapted by society (Perignon et al.,|2016; Macdiarmid &
‘Whybrowl, 2019). We must understand what drives food choice before we can strive to change it.

To understand decisions around food fully, we need an holistic approach which considers a range of
factors. For example, consider the apparent cognitive dissonance between desires to eat sensorially
indulgent foods (Graga et al., [2015} [Olsenl 2008; |/Armstrong Soule & Sekhon, 2018) and intentions
to eat healthily (Pieniak et al., 2010; Perignon et al., |2016), or in ways that satisfy social norms
(Bogueva et al., 2017} |Carlucci et al.| 2015;|Abbots & Coles| 2013} |Pohjolainen et al.,|2015). Most
existing studies investigate a single influence on food choice using explicit methods such as con-
sumer surveys or focus groups (for recent examples, see Morales & Higuchi| (2018)) or [Markowski
& Roxburgh| (2019)), but these explicit methods rarely capture crucial implicit influences, such as
cognitive and emotional associations between different foods (Koster, [2003; [Dalenberg et al.,[2014)).

In this paper, we investigate what we believe to be the currently little-explored dimension of implicit
determinants of food choice. To do so, we assume that language can be used as a window into
how people think and feel as shaped by culture and habitual behaviours - thus providing insight into
both the explicit and implicit knowledge people have about foods. We then use Machine Learning
methods for analysis; specifically a Distributional Semantic Model. DSMs are not only valuable for
Natural Language Processing, but also for modelling human cognitive relations and semantic mem-
ory (Jones et al., 2015). By examining the behaviour of food-word embeddings within this model,
we are able to consider food choice as a mixture of explicit and implicit mental representations,
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rather than as the product of a single explicit factor. It is this data-driven approach that allows us to
model how UK citizens implicitly think and feel about foods.

2 MODEL AND STUDY DESIGN

The basic design of our study was as follows: we defined a set of food-words comprehensively
representative of diets across the UK. We trained the Skip-gram algorithm (Mikolov et al.,2013) on
the ukWaC corpus (Baroni et al., 2008)), and studied the behaviour of food-word embeddings using
unsupervised learning, bootstrapping of psycholinguistic variables, and close textual analysis.

2.1 CHOICE OF SEED WORDS

We obtained a total of 925 food terms (including all variants in spelling, pluralisations and syn-
onyms) by cross referencing Appendix R to the National Diet and Nutrition Survey (PHE, 2018bﬂ
with WordNet (Princeton University} [2010) and BBC Food. Words with fewer than twenty occur-
rences in the corpus were removed in line with the ‘Sinclair cut-off’. (Baroni et al., [2008)). Words
with polysemic meanings of very high frequency (i.e. ‘date’, ‘“Turkey’) were removed. 14 Native
English speakers were consulted over removal of words of more ambiguous polysemy (i.e. ‘roll’,
‘chop’). Our final list contained 640 terms, including multi-word expressions like ‘baked beans’.

2.2 CHOICE OF DISTRIBUTIONAL SEMANTIC MODEL AND CORPUS

Baroni et al.| (2014) demonstrate that neural, context-predicting models (particularly Mikolov et al.’s
Skip-gram (2013)) provide a very good fit to human performance in tasks such as analogy and con-
text categorization. Skip-gram has also been used to accurately extrapolate psycholinguistic vari-
ables using a k-nearest neighbour approach (Mandera et al., 2015), suggesting the embeddings la-
tently encode psychologically valid dimensions. We therefore assumed that the embeddings derived
from Skip-gram could be considered a reasonable proxy for human semantic memory.

Our corpus needed to balance high-quality examples of UK English with the requirement of suffi-
cient data to train Skip-gram for meaningful semantic representations. Our chosen corpus was the
ukWaC, a web-crawled corpus containing 1.9 billion tokens extracted from 2.69 million documents
(Baroni et al., |2008). The ukWaC comprises varied content extracted from .uk web domains (in-
cluding academic literature, advertisements and public service documents), which was extensively
linguistically post-processed to minimise the quantity of data ‘noise’.

3 RESULTS

3.1 OVERALL BEHAVIOUR OF FOOD EMBEDDINGS

To investigate how foods are represented and organised in the semantic memory of UK individuals,
we looked for natural categories and groupings of the food-word embeddings using the unsupervised
learning technique of k-means clustering (MacQueen, |1967).

Since the inherent randomness in the initialisation of k-means centroids can occasionally lead to a
sub-optimal solution, we performed 100 tests of the optimum number of clusters using a combina-
tion of cluster validity indices (Silhouette, Davies-Bouldin and Califiski-Harabasz). We found the
optimum number of clusters to be £ = 3.

We performed Principal Co-ordinates Analysis on the 300-dimensional food word-embeddings only,
to produce a 2-dimensional, visualisable space. Figure 1 shows how food-word embeddings split
naturally into three categories: Fish and Seafood; Edible Plants i.e. fruit, vegetables, nuts, seeds;
and Miscellaneous, which is a mixture of meat, savoury and sweet foods, and animal derivativesﬂ

' Appendix R (‘Main and subsidiary food groups and disaggregation categories’) provides a detailed list of
all foods recorded in four-day food diaries collected from a sample of UK individuals (PHE} 2018a)

Due to space constraints, Figure 1 presents only a subset of all food words used in the model (for readabil-
ity). See Figure 3 in the appendices for a larger-scale version of this visual representation with all food-word
embeddings studied, and Figure 4 for a larger scale visual representation of the Miscellaneous category.
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Figure 1: Arrangement of food-word embeddings according to k-means clustering, k = 3. Green,
bold-face words represent the Edible Plants category; blue, italicised words are the Fish and
Seafood category; and the brown, standard-face words are the ‘Miscellaneous’ category.

3.2 BOOTSTRAPPING VALENCES

To analyse the affect associated with the different foods, we followed Mandera et al.s approach of
bootstrapping valence scores (i.e., the extent to which a given word elicits positive, negative or no
emotional associations) by averaging the valences of the k-nearest neighbours (2013), with k = 10
and neighbourhoods defined by cosine similarity. Figure 2 shows a box-plot of these estimated va-
lence scores, grouped by k-means cluster; it is clear that across the board, foods have positive affec-
tive associations (Z = 0.96, P(u # 0) < 0.001). Miscellaneous foods have the strongest positive as-
sociations, mostly due to the presence of sweet foods in the category (tsweet = 1.33, thmise = 1.12).
Fish and Seafood have the least positive associations, though averages are still above neutral
(z = 0.50; P( # 0) < 0.0001). Both parametric (2-sample t-test) and non parametric (Mann-
Whitney U-test) were applied as the distributions were unknown; in both tests, the differences in
mean valence between the three categories was statistically significant (P(u1 # pe) < 0.001 for
each pairwise comparison, after a Bonferronni correction for b = 3 tests).
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Figure 2: Box-plot of bootstrapped valences for the k-means clusters as defined in Section 3.2
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3.3 ANALYSIS OF LEXICAL NEIGHBOURHOODS

The 10 nearest neighbour adjectives to each word in each k-means cluster were thematically coded
using a similar scheme to |Papies| (2013), by two independent, native speakers of UK English with
good knowledge of the project. Inter-coder agreement was 79%, with discrepancies in coding re-
solved through discussion between coders. Themes for coding were: ‘sensory’ (taste, texture);
‘situational’ (time/place of eating); ‘hedonic’ (judgement i.e. ‘yummy’, ‘gross’); ‘food prepara-
tion’ (descriptions and verbs, including past-participles such as ‘roasted,” ‘fried’); ‘nutrition’; ‘other
foods’ (any food noun); and ‘other - unrelated.” Results are presented in Table 1. Notable results
(bold-faced) are that the Fish and Seafood category is associated with many non-food contexts but
few sensory attributes, and Miscellaneous foods are the only group to be associated with hedonic
language.

Fish and Seafood Edible plants Miscellaneous

Sensory 6.3 26.8 22
Situational 0 0 0.9
Hedonic 0 0 54
Food preparation 32.6 26.8 40.9
Nutrition 0 0.1 0.4
Other foods 48.3 44.7 29.7
Other - unrelated 12.8 1.6 0.7

Table 1: Percentage of neighbour-adjectives in each description category for the three food clusters

4 DISCUSSION AND CONCLUSIONS

Our headline result is the discovery that people in the UK mentally represent foods in three main
categories: Fish and Seafood (FS), Edible Plants (P), and a Miscellaneous group (M) including
meats, dairy products, and composite foods.

FS foods are described using a small proportion of sensory words, (< 7%) and a low variety of food
preparation terms (over 40% of these being ‘breadcrumbed’, ‘grilled’ and ‘fried’), which indicates
unfamiliarity with the food group. Given that unfamiliar foods are expected to be less sating (Brun-
strom et al.,2008)), and unfamiliarity with fish preparation associates fish with inconvenience (Olsen
et al.| 2007; Thorsdottir et al.,2012), FS foods forming their own category seems unsurprising.

With meat represented closely with composite foods like curries, pies and sandwiches (c.f. standard
‘main meals’), the notion that “it’s not a meal without meat in it” ((Macdiarmid et al.,|2016))) appears
implicitly in UK representations of foods. Matching with|Yates & Warde[s analysis of British eating
habits (2015) we see evidence that meat is at the ‘centre’ of the meal; vegetables and fruits in
their own, separate category relegates them to ‘trimmings’. Indeed, with meat at the centre of the
‘standard’ foods category, we can see how the social environment is implicitly unsupportive of plant-
based diets ((Markowski & Roxburgh, [2019; Macdiarmid et al., 2016) and why non-meat-eaters are
perceived as “disrupting social conventions” ((Markowski & Roxburgh, 2019)).

Bootstrapping the valences of different foods revealed that in general, emotions toward food are pos-
itive (z = 0.96) - the accuracy of these bootstrapped valences is validated by the known existence
of positive hedonic asymmetry among consumer emotions (Schifferstein & Desmet, 2010). Climate
crucial foods (meats) actually have a relatively low mean valence (tmeqt = 0.89, timise = 1.12),
which may suggest it is attachment to the implicit concept of the meal that keeps meat at the centre
of the UK diet, rather than the desire for meat itself. Moreover, because only M foods are described
using a wide range of hedonic and sensory attributes, a potentially useful strategy could be to in-
crease the use of indulgent language for describing plant-based foods, given that style of description
has been shown to not only encourage people to choose foods with more “indulgent” names (Turn-
wald et al.,|2017), but to pre-bias them into actually perceiving the food as tastier, more satisfying
and more caloric (Wansink et al., 2005]).
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A APPENDIX
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Figure 3: Arrangement of all food-word embeddings according to k-means clustering, k = 3.

Green, bold-face words represent the Edible Plants category; blue, italicised words are the Fish

and Seafood category; and the brown, standard-face words are the ’Miscellaneous’ category.
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Figure 4: Miscellaneous cluster, coloured by ’standard’ food categories: red, bold-face words are
Meat; black, standard-face words are Animal Derivatives (i.e. dairy, eggs); pink, italicised words
are Sweet composite foods; blue, italicised words are Savoury composite foods; and green, italicised
words are Other composite foods.
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