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ABSTRACT

Agricultural droughts can exacerbate poverty and lead to famine. Timely
distribution of disaster relief funds is essential to help minimise the impact
of drought. Indices of vegetation health are indicative of higher risk of
agricultural drought, but their prediction remains challenging, particularly
in Africa. Here, we present an open-source machine learning pipeline for
climate-related data. Specifically, we train and analyse a recurrent model to
predict pixel-wise vegetation health in Kenya.

1 INTRODUCTION

Drought is estimated to be one of the world’s most costly hazards, accounting for 22% of
damage from natural disasters (Wilhite et al,|2007). Since 1980, East Africa has experienced
a number of severe droughts. There is evidence to suggest that droughts are becoming longer
and more frequent in the region due to climate change (Nicholsonl 2017)).

The timely prediction of drought can help reduce the risk of a hazard turning into a social or
environmental disaster, by improving the response times of NGOs and governments (Hillier
and Dempsey, [2012). In Kenya, the National Drought Management Authority (NDMA) has
distributed emergency funds through the Drought Contingency Fund since 2014 (Klisch and
Atzberger, [2016)). Currently, the funds are distributed depending on near-real time indices
drawn from satellite imagery. Despite the importance of predicting drought occurrence and
impact, it remains challenging, particularly in East Africa, due to the complex interactions of
large scale atmospheric circulation with local orography (Gebremeskel Haile et al., |2019). In
this paper we demonstrate the use of a machine learning pipeline for improving the prediction
of the vegetation health index used by the NDMA.

In particular, we train a regular Long Short Term Memory network (LSTM) (Hochreiter
and Schmidhuber| (1997) and an Entity-Aware LSTM (Kratzert et all 2019)) to predict
seasonal drought conditions in Kenya, measured by the Vegetation Condition Index averaged
over 3 months (VCI3M) (Koganl [1997). The VCI3M is a satellite-derived measurement of
anomalous vegetation health. Our models outperform a persistence baseline for predictions
one month ahead. In addition, they are competitive with a model implemented by the
NDMA (Adede et al.l |2019) while producing much more spatially granular predictions. In
this paper, we focus on the same four arid districts as |Adede et al.| (2019)). As an additional
contribution, we present an open-source pipeline for training machine learning algorithms
with multiple sources of climate-related data.

*Equal Contributions
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(a) Observed 3 Month Vegetation Condition (b) The effect (Shap value) of spatially aggre-
Index (VCI3M) in April 2017, showing low gated precipitation on the model predictions
vegetation health across most of the region for a prediction made for March 2018.
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Figure 1: (a) An example target variable for April 2017. Input data from the previous
three months, January, February and March 2017, are used as input to the model to make a
prediction as close as possible to the observed VCI3M in April 2017 displayed above. (b)
Shap values assign higher absolute values to inputs which had a greater impact on the model
prediction. For this model, trained on 12 months of input data, data from more than 3
months away than the prediction date had very little effect on the model’s prediction.

2 DATA AND METHODS

2.1 A PIPELINE FOR CLIMATE SCIENCE AND MACHINE LEARNING

To easily combine data from multiple sources, such as gridded climate data and satellite
imagery, we developed an open source plpehneﬂ for training and evaluating machine learn-
ing algorithms with these geospatial datasets. Although this pipeline was developed for
drought forecasting, many aspects of the pipeline are applicable to other hydrological and
climatological problems, since we can easily change the predictors and target variables.

The aspects that are generally applicable include:

e downloading and working with geospatial data in raster format.

e the ability to combine time-varying (dynamic) and non-time varying (static) data.

e the importance of spatial and temporal aggregations to the models.

The pipeline was written to be flexible and extensible. We use multiple data sources and
demonstrate the potential of our method to aid disaster management and relief efforts.

2.2 DaAta

We leveraged the pipeline to combine a combination of publicly available datasets to train
the models. For this research we focused on VCI3M in Kenya, using data within latitudes
(-5.202, 6.002) and longitudes (33.501, 42.283) (see an example in Figure [la). We used data
from 2001 to 2015 as training data, and evaluated the trained models on data from 2016 to
2018. We are using the same VCI data developed by Klisch and Atzberger| (2016) which is

in operational use by the NDMA in Kenya.

All datasets were spatially regridded to match the ERA-5 spatial grid (Hersbach and Dee|
, which has a spatial grid of 0.3 degrees (roughly 30 km), and normalised by subtracting
the mean and dividing by the standard deviation. The models received as input the previous
3 months of data to the month being predicted, predicting VCI3M one month into the future.

The data was divided into (temporally) static data, and dynamic data. This allows us to
transfer knowledge between locations with similar characteristics (Kratzert et all, [2019)).

"https://github.com/ml-clim/drought-prediction
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Table 1: RMSE results of the baseline persistence model, a standard LSTM and the EALSTM
model. We present both the pixel-wise RMSE, and the RMSE of the models when their
predictions are averaged across a district. The best results are highlighted.

Pixel wise Spatially Aggregated
District Persistence LSTM EALSTM Persistence LSTM EALSTM
Mandera 8.68 4.96 5.48 8.51 4.13 4.69
Marsabit 8.65 4.69 5.03 8.90 3.25 3.25
Turkana 10.22 4.70 4.90 9.78 2.32 2.92
Wajir 7.7 4.47 4.70 7.82 3.77 3.92

Dynamic Data: The following raw variables were used as dynamic data: (i) VCI and
VCI3M (Klisch and Atzberger| [2016), (ii) evapotranspiration and soil moisture (Martens et al.l
2017)), (iii) precipitation (Funk et al. 2015), (iv) potential evaporation and temperature
(Hersbach and Dee, 2016). In addition to being spatially regridded, datasets were also
temporally resampled to monthly time steps, using a monthly mean.

In addition to the raw dynamic data, we passed to the models: (v) spatial means of the
dynamic data, collapsing spatial variability and producing one value for each time step,
constant across all pixels.

Static Data: The following raw variables were used as static data: (i) topography (Jarvis
et al., 2008)), and (ii) soil type (Hersbach and Dee, 2016)).

In addition to the raw static data, we passed to the model: (iii) a one hot encoding of the
month being predicted, (iv) the latitude and longitude of the pixel being predicted, and (v)
spatio-temporal means of the dynamic data (collapsing space and time to a single value).

2.3 MODELS

As predictive models, we trained an LSTM and an Entity-Aware LSTM. EALSTMs were
first used for rainfall-runoff modelling by |[Kratzert et al.| (2019)), and their use in this other
hydrological application motivated us to apply them to drought prediction. The models were
trained to predict pixel-wise VCI3M for four arid and semi-arid districts in Kenya. As a
baseline we employ a persistence model, which predicts VCI3M to be VCI3M one month
ago. Persistence is a common baseline in meteorological and hydrological forecasting (Wilks,
2011). To train the models, we used the smooth L1 loss function, also known as the Huber
loss function, with 6 = 1. The smooth L1 loss is less sensitive to outliers than the mean
squared error loss (Girshick, 2015)).

EALSTM: Receives both a dynamic and static input. The dynamic data, Xnemic is fed
into the network sequentially. The static data, Xt?*c, is the same for each time step but
unique for each ’entity’ (here each entity is a pixel) (Kratzert et all [2019). We expect the
model to learn how different pixel VCI3M values respond to dynamic data (meteorological
forcing) differently conditional on the static data (such as topography).

LSTM: Receives the static data appended to every time step of the dynamic data.

3 RESULTS AND ANALYSIS

3.1 MODEL PERFORMANCE

We measured the performance of the models by calculating the root mean square error
(RMSE) of the model predictions. VCI (and therefore VCI3M) is on a scale of 0-100, where
0 is the least healthy vegetation observed, and 100 is the most healthy vegetation observed.
The results of the experiment are presented in Table The EALSTM and LSTM both
outperform the persistence baseline, in both the pixel-wise and spatially aggregated case.

We experimented with feeding longer time-series to the model, but using model interpretability
techniques (specifically, Shap values (Lundberg and Lee, [2017) calculated using DeepLIFT
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Table 2: R? values reported by [Adede et al. (2019)), a persistence baseline, and our LSTM
and EALSTM models. The best results are highlighted.

District |Adede et al.|(2019) Persistence LSTM EALSTM

Mandera 0.94 0.66 0.88 0.94
Marsabit 0.94 0.74 0.93 0.93
Turkana 0.91 0.74 0.98 0.95
Wajir 0.96 0.72 0.84 0.92

(Shrikumar et al., |2017))), we determined that the model was not using information from
more than 3 months before the prediction date (Figure . Reducing the length of the input
time-series significantly reduced training time without penalising performance.

3.1.1 COMPARISON WITH |ADEDE ET AL.| (2019)) VEGETATION HEALTH MODEL

In addition to comparing against a persistence baseline, we compared our models to the Adede
et al.| (2019) model, developed by researchers at the NDMA and considered state-of-the-art.
Using indices derived from temperature, vegetation health, evapotranspiration, potential
evapotranspiration and precipitation |Adede et al. (2019) train an ensemble of 111 linear
neural networks and support vector regressions.

To better compare the models, we retrained our models to receive the same raw inputs as
the [Adede et al| (2019) model, using raw precipitation, temperature, evapotranspiration,
potential evaporation, VCI and VCI3M as input variables (keeping the aggregations, the one
hot encoding of the month being predicted and the latitude and longitude being predicted).

Our results are presented in Table [2| Because |Adede et al.| (2019) only report test results
from 2016-2017, we only used those years to calculate the VCI3M R? score. In addition,
the |[Adede et al.| (2019) model predicts a single VCI3M value per district. To compare their
model with ours, we took a district-wide average of our pixel-wise predictions. Our models
are competitive with |Adede et al.| (2019))’s ensemble of 111 models, and produce much more
spatially granular predictions. This is particularly encouraging because during the 2016-2017
period being compared, there were droughts in Wajir (NDMA| 2017)) and in Turkana and
Marsabit (Uhe et al.l [2017). These conditions therefore represent the conditions in which we
most want the models to perform well.

We ultimately hope our models can supplement the NDMA’s disaster relief efforts.

4 CONCLUSION AND FUTURE WORK

We have introduced an open-source pipeline for training and evaluating machine learning
models with climate and hydrological data. We demonstrate the use of our pipeline by
predicting pixel-wise vegetation health in Kenya, producing results that outperform a baseline
persistence model and are competitive with the current state of the art model developed by
Kenya’s National Drought Management Authority (Adede et al.l [2019).

We anticipate three future research avenues:

1. Explore the difference in information content between the drought indices used as
input to the [Adede et al.|(2019) model and the raw meteorological and hydrological
variables used as input for our models. Is information lost when using current
indices?

2. Utilise the tools from interpretable machine learning to better understand the
relationship between climate factors and vegetation health. We have integrated
the ability to calculate importance scores of input features into our pipeline, using
DeepLIFT. We intend to experiment with this further.

3. Incorporate forecasted weather data into our predictions as predictor variables, com-
bining the predictions from physics-based models with machine learning techniques.



Published as a workshop paper at ICLR 2020

REFERENCES

C. Adede, R. Oboko, P. W. Wagacha, and C. Atzberger. Model ensembles of artificial neural networks
and support vector regression for improved accuracy in the prediction of vegetation conditions
and droughts in four northern kenya counties. International Journal of Geo-Information, 8(12),
2019. doi: 10.3390/1jgi8120562. URL https://www.mdpi.com/2220-9964/8/12/562.

C. Funk, P. Peterson, M. Landsfeld, D. Pedreros, J. Verdin, S. Shukla, G. Husak, J. Rowland,
L. Harrison, A. Hoell, and J. Michaelsen. The climate hazards infrared precipitation with
stations—a new environmental record for monitoring extremes. Scientific Data, 2, 2015.

G. Gebremeskel Haile, Q. Tang, S. Sun, Z. Huang, X. Zhang, and X. Liu. Droughts in East
Africa: Causes, impacts and resilience. Farth-Science Reviews, 193:146—161, jun 2019. ISSN
0012-8252. doi: 10.1016/J.EARSCIREV.2019.04.015. URL https://www.sciencedirect.com/
science/article/pii/S0012825218303519.

R. Girshick. Fast R-CNN. IEEE International Conference on Computer Vision (ICCV), 2015.
H. Hersbach and D. Dee. Era5 reanalysis is in production. ECMWF newsletter, 147(7):5-6, 2016.

D. Hillier and B. Dempsey. A dangerous delay: The cost of late response to early warnings in the
2011 drought in the horn of africa. Ozfam Policy and Practice: Agriculture, Food and Land, 12
(1):1-34, 2012.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735-1780,
1997. doi: 10.1162/neco0.1997.9.8.1735. URL https://doi.org/10.1162/neco.1997.9.8.1735.

A. Jarvis, H. Reuter, A. Nelson, and E. Guevara. Hole-filled seamless srtm data v4. International
Centre for Tropical Agriculture (CIAT), 2008.

A. Klisch and C. Atzberger. Operational drought monitoring in Kenya using MODIS NDVT time
series. Remote Sensing, 8(4), 2016. ISSN 20724292. doi: 10.3390/rs8040267.

F. N. Kogan. Global drought watch from space. Bulletin of the American Meteorological Society, 78
(4):621-636, 1997. doi: 10.1175/1520-0477(1997)078<0621:GDWFS>2.0.CO;2.

F. Kratzert, D. Klotz, G. Shalev, G. Klambauer, S. Hochreiter, and G. Nearing. Benchmarking a
catchment-aware long short-term memorynetwork (Istm) for large-scale hydrological modeling.
submitted to Hydrol. Earth Syst. Sci. Discussions, 2019.

S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predic-
tions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems
30, pages 4765-4774. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/
7062-a-unified-approach-to-interpreting-model-predictions.pdf|

B. Martens, D. Miralles, H. Lievens, R. van der Schalie, R. de Jeu, D. Fernandez-Prieto, H. Beck,
W. Dorigo, and N. Verhoest. Gleam v3: satellite-based land evaporation and root-zone soil
moisture. Geoscientific Model Development, 10:1903-1925, 2017.

NDMA. Wajir county: Drought early warning bulletin for august 2017. Techni-
cal report, Government of Kenya, 2017. URL https://reliefweb.int/report/kenya/
wajir-county-drought-early-warning-bulletin-august-2017.

S. E. Nicholson. Climate and climatic variability of rainfall over eastern Africa. Reviews of Geophysics,
55(3):590-635, 2017. ISSN 19449208. doi: 10.1002/2016RG000544.

A. Shrikumar, P. Greenside, and A. Kundaje. Learning important features through propagating
activation differences. 2017.

P. Uhe, S. Philip, S. Kew, K. Shah, J. Kimutai, F. Otto, G. J. V. Oldenborgh, R. Singh, J. Arrighi, and
H. Cullen. The drought in kenya, 2016-2017. Technical report, Climate and Development Knowl-
edge Network, 2017. URL https://reliefweb.int/report/kenya/drought-kenya-2016-2017.

D. Wilhite, M. Svoboda, and M. Hayes. Understanding the complex impacts of drought: A key to
enhancing drought mitigation and preparedness. Water Resources Management, 21(5):763-774,
2007.

D. S. Wilks. Statistical methods in the atmospheric sciences, volume 100. Academic press, 2011.


https://www.mdpi.com/2220-9964/8/12/562
https://www.sciencedirect.com/science/article/pii/S0012825218303519
https://www.sciencedirect.com/science/article/pii/S0012825218303519
https://doi.org/10.1162/neco.1997.9.8.1735
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://reliefweb.int/report/kenya/wajir-county-drought-early-warning-bulletin-august-2017
https://reliefweb.int/report/kenya/wajir-county-drought-early-warning-bulletin-august-2017
https://reliefweb.int/report/kenya/drought-kenya-2016-2017

	Introduction
	Data and Methods
	A pipeline for climate science and machine learning
	Data
	Models

	Results and Analysis
	Model Performance
	Comparison with kenyaoperational vegetation health model


	Conclusion and Future Work

