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ABSTRACT

Arid and semi-arid lands (ASALs) in developing countries are heavily affected
by the effects of global warming and climate change, leading to adverse climatic
conditions such as drought and flooding. This proposal explores the problem of
fresh-water access in northern Kenya and measures being taken to safeguard water
access despite these harsh climatic changes. We present an integrated water man-
agement and decision-support platform, eMaji Manager, that we developed and
deployed in five ASAL counties in northern Kenya to manage waterpoint access
for people and livestock. We then propose innovative machine learning methods
for understanding waterpoint usage and repair patterns for sensor-instrumented
waterpoints (e.g., boreholes). We explore sub-sequence discriminatory models
and recurrent neural networks to predict waterpoint failures, improve repair re-
sponse times, and ultimately support continuous access to water.

1 INTRODUCTION

Achieving sustainable access to fresh water for low- and middle-income countries with an ever-
expanding population requires multifaceted approaches, particularly in arid and semi-arid lands
(ASALs). Resilience to climate variability and change in ASALs is greatly dependent on sustainable
access to groundwater Taylor et al. (2013). Changes in climatic patterns are likely to increase the
spatio-temporal variability in precipitation rates and surface water that makes it difficult to rely on
these sources of water. Mitigating solutions such as rainwater harvesting, while important, may not
be sustainable in ASALs which are often characterized by prolonged spells of drought followed by
rainstorm flash floods that cause heavy loss of life and property Lin (1999).

Kenya has experienced a rise in the frequency of drought and floods in recent years. An analysis
done in the country by Glew et al. (2010) indicates that climate change will likely increase drought
incidences, temperatures, and water scarcity in northern Kenya which can exacerbate the poverty
levels in a region that depends on rangeland grazing of livestock for their livelihood. Consequently,
this region needs to adapt and manage its limited groundwater resources differently. However, to
date, policy- and decision-makers lack the necessary tools for improved evidence-based decision
support necessary for the planning and management of groundwater resources. Fortunately, recent
advancements in technologies such as remote sensors and IoT (Internet of Things) devices combined
with new deep learning methods can be leveraged to understand challenges and generate insights
pertaining to access and use of groundwater.

We present a novel water supply management and decision-support platform using a case study of
five counties in northern Kenya. We then propose two key areas for machine learning to provide
new insights into waterpoint management and decision-support: (1) the use of discriminatory sub-
sequence mining of waterpoint data to detect recurrent behaviours or unknown trends on deployed
waterpoint sensors, and (2) waterpoint failure prediction using long short-term memory (LSTM)
recurrent neural networks.
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Figure 1: Sensors dashboard in eMaji Manager indicating sensor and site information.

2 EMAJI MANAGER PLATFORM: INVENTORY, ISSUE REPORTING AND
REMOTE SENSING FOR WATERPOINTS

The eMaji Manager is an integrated mobile and web waterpoints management system that has been
implemented across 5 counties in northern Kenya through the KRAPID (Kenya Resilient Arid Lands
Project for Integrated Development Project) initiative mwa. One of the goals of KRAPID is to
improve water access in the 5 northern counties of Kenya from 37% to more than 50%. Before
the start of the project, county water officials relied on a community leader to inform them about
an issue at a waterpoint such as a pump failure at a borehole. A team from the county would then
conduct a site visit to confirm the issue and plan for repair. The repair work would then commence,
and once completed and the waterpoint is functional, the issue was closed. This process would
take weeks to months for a single waterpoint and could involve multiple waterpoints spread out in
different geographical locations. As a result, many communities were often left without continuous
access to water. To mitigate such technical water inaccessibility challenges, KRAPID aims at using
technology to significantly reduce the time of reporting and repair of waterpoints.

The eMaji Manager ensures efficiency and transparency in the management and operation of water-
points. The platform has the following key capabilities: ticketing and issue tracking for monitoring
and repair of boreholes; descriptive analytics for reporting at the county and sub-county levels; and
visualization and analytics for decision support. For each waterpoint, the platform captures informa-
tion about the waterpoint name, geolocation, functional status, cost of water for livestock and people,
and infrastructural details. Additionally, we collect time-series data from sensor-instrumented bore-
holes such as operating hours, yield, and operational status. The data from the sensors is visualized
on a dashboard that is used by county government officials for monitoring. Thus far, 114 boreholes
have been instrumented with sensors that have generated sensor data since 2018. Fig. 1 illustrates
how the dashboard is used to monitor sensor uptime, sensor status, and site uptime. "Sensor Uptime"
is the proportion of time that a given sensor is active and transmitting data: low, high and unknown.
"Sensor Status" refers to the proportions of sensors on water points within an administrative region
in any one of the following states: normal use, low use, no use, offline, repair, or seasonal disuse.
"Site Uptime" refers to the proportion of boreholes categorized by unknown, low, medium and high,
where uptime refers to the period of time that water is extracted. Fig. 1 also shows the geolocations
of all instrumented waterpoints and the "Sensor Status".

3 PATTERN MINING AND FAILURE PREDICTION FOR WATERPOINTS

County and sub-county water stakeholders have to address several key questions to ensure there is
continuous access to water for their residents. One of their major concerns is the ability to forecast
potential areas where there may be water scarcity and to develop mitigation strategies to minimize
community disruption to water access. Such challenges can be addressed by understanding func-
tional patterns of instrumented waterpoints, detecting anomalies in their operation, and predicting
failures. We propose to study "waterpoint behavior" using two different techniques. First, we pro-
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pose an unsupervised method to analyze sequential patterns from waterpoint sensor data that lead to
failures, detect recurring behaviours, and automatically generate rules and unknown trends associ-
ated with a waterpoint. Second, we propose to train time-series models that predict events such as
failure, or high yield, that will trigger targeted interventions to the communities potentially affected.

We can find several examples in literature that use sequence mining techniques and recurrent net-
works to predict failure on sensor data and industrial processes. For example, Hajiaghayi & Vahedi
(2019) present a solution based on recurrent neural networks to find sessions that are prone to code
failure in applications that rely on telemetry data for system health monitoring. In the manufacturing
space, Lim et al. (2017) propose a method to construct a predictive model of failure based on event
sequences observed at the wire bonding process step. Kuzin & Borovicka (2016) shows different
approaches that deal with early failure detection of sensor parts.

Given the sequential nature of waterpoint sensor data, we use Discriminatory Subsequence Mining
to compare two subgroups of instrumented waterpoints (boreholes) and mine patterns that appear
predominantly in one of the subgroups. For example, the set of waterpoint sensor data that contains
a failure, compared to the rest of the waterpoints. Sequence mining provides the domain expert with
a series of common sequential patterns of waterpoints and associated metrics including coverage-
what percentage of one group contains a specific pattern, and lift- how likely a pattern is to appear
in one group and not in the other one. For example, we can find a discriminatory sequence {low →
normal → normal → normal}, which refers to one month of low use followed by three months
of normal use, with coverageleft = 0.3388, coverageright = 0.0892, and lift = 3.795. The
coverageleft value means that 33% of the sensors that contain this sequence end with failure status.
The coverageright value refers to a low frequency in the rest of the population data, thus, the pattern
found is discriminatory regarding failure class in sensors. Furthermore, the lift value shows that this
pattern is 3 times more likely to appear on sensors with failure events than functional waterpoint
sensors. This insight would be valuable for developing automated waterpoint repair regime.

For failure prediction, our strategy is to map the input sequence of events from sensor_status to a
fixed-sized vector representation using a recurrent neural network (RNN), and then feed the vector
to a softmax layer for classification on the type of failure status: {offline, repair, seasonal disuse}.
Given a series of status events e = {e0, e1, e2, · · · , eT } we first use a lookup layer to get the repre-
sentation vector for each status event ei for examples of status types. The output at the last moment
hT can be regarded as the representation of the full sequence of status events during the last n days
prior to the failure. This has a fully connected layer followed by a softmax non-linear layer that pre-
dicts the probability of a particular type of failure for that time window of events. We can process, in
real-time, new sensor data and use the trained model to infer what is the probability, P (si)x = fail
for an online sensor, si, installed at a waterpoint, to fail in the next x days. When the probability
exceeds a given threshold we can update the dashboard on eMaji Manager and automatically add
the waterpoint to a "repair watchlist". In the big picture, this would contribute to the water supply
crisis alarm that has a spectrum of (low - medium - intense) water crisis based on the projection of
impacted waterpoints in a region. Example properties that would factor into triggering the alarm are
waterpoint relevance for drought emergencies and the population served.

4 DISCUSSION AND FUTURE WORK

Climate change and variability has had a direct impact on livelihoods in northern Kenya due to
the increased uncertainty of drought seasons. This has necessitated the development of adaptation
strategies to help cope with acute water shortages. We developed the eMaji Manager as a tool to
assist in adapting to drought emergencies. eMaji Manager is an integrated waterpoint inventory,
issues tracking, and decision support system for county officials. We propose to enhance the quality
of data in eMaji by exploiting the waterpoint and sensor data to extract temporal patterns and predict
non-functionality to shorten repair response time and provide an emergency alert system.

Further work needs to be done on cross-domain data linkage to integrate insights from other data
sources such as weather, human migration patterns, and aquifers. Recent work in weather modeling,
for instance in forecasting extreme events Rolnick et al. (2019), shows great promise for identifying
weather patterns and predicting precipitation with a forecast horizon of between four to six weeks
Hwang et al. (2019). We seek to augment weather, waterpoint and sensor data to enhance the
understanding of temporal and spatial patterns on water availability for ASAL regions.
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Figure 2: Overview dashboard for county official. The dashboard displays summary data about
waterpoint types in the region, operational states summary of waterpoints and individual waterpoints
on a map

A APPENDIX

A.1 WATERPOINT INVENTORY MANAGEMENT SYSTEM

Fig. 2 shows the overview page for waterpoint inventory management. This page helps the county
officers to manage waterpoints in their regions. In addition to viewing a summary of waterpoint
statuses, waterpoint types and locations of waterpoints on a map, the officers are able to view, edit
and add waterpoint information including, infrastructure information on the waterpoints, sensor in-
formation, costs associated with the waterpoints, usages and even reports for a particular waterpoint
as shown in Fig. 3

A.2 DECISION SUPPORT PLATFORM

Fig. 4 shows the overview page for the decision support functionality. An officer is given a snapshot
of the status of waterpoints in their region. At a glance, they are able to know how many tickets are
open, how many waterpoints are impacted, and the number of animals and people affected by the
non-functional waterpoints. They also see which tickets are open and are able to act on them, or
assign relevant officials to follow up on open tickets, thus ensuring responsive repairs. The officer
can also drill down to see details of the particular non functional borehole. The system also generates
recommendations for the officers on mitigation actions that they can take, as illustrated in Fig. 5
based on severity of reported issue.
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Figure 3: Dashboard showing all details of a particular waterpoint. The details include infrastructure
information, usage, sensor, operational status and reports for the waterpoint

Figure 4: Decision support dashboard for county official. The dashboard displays summary data
about waterpoints in the region, non-functional waterpoints, the tickets and issues requiring action,
and a summary of reported issues.
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Figure 5: Decision support drill-down page for county official. The page displays waterpoint details
of the non functional waterpoint, present and past ticket details to allow for tracking of the issues
and their resolution, and a recommended mitigation actions based on severity of issue and context
of waterpoint

Figure 6: Dashboard showing sensor information: yield, location sensor status and a graph display-
ing daily sensor readings
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Figure 7: Table showing daily data received from remote sensors including sensor id, sensor classi-
fication, status, up-time, yield and active hours.
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