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Test Case: Homogenous Isotropic .'LosAlamos
Turbulence (HIT)

EST.1943

DNS dataset of HIT in a cube — stationary in time. Periodic boundary conditions

Goal: Learn spatio-temporal 3D dynamics from few snapshots Domain Size: 1283

Training Data: 0 — | eddy time. Test Data: > |.5 eddy times.
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Why?
* Autoencoders are expensive to train for large datasets (e.g.

40963 flow)
* Interpretable Model reduction is challenging

Goal: Emulate 3D turbulence more efficiently + better physics
intuition/interpretation
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: - Los Alamos
Woavelets for Multiscale Datasets  wrov: tionor
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Locally adaptive, applicable to non-stationary/ aperiodic/ non-linear datasets
Exploits redundancy in scales [ turbulence? Multiscale phenomena?

Several favorable mathematical properties, can be computed analytically for
any dataset in n-dimensions.

Compact representation of information than raw data [ | can lead to
efficient learning.

Excellent candidate for data compression, pattern recognition and
reduced order modeling of multi-scale systems — at low cost
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Wavelet Compression in Action.... - LosAlamos
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Wavelet thresholding: Selecting few coefficients with highest energy, reconstruct the
data with the selected i.e. the thresholded wavelets.
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Current work: 3% of wavelet coefficients with highest magnitude chosen.
(Each coefficient has 3 velocity components) — Truncate the rest i.e.

Thresholding
Strategy:
Decompose velocity field to wavelet space.
Choose wavelets for thresholding based on energy criteria.
Train thresholded wavelet coefficients with Convolutional LSTM
Used learned models to predict wavelet coefficients for future timesteps

Inverse wavelet transform of all predicted coefficients to obtain velocity
field in real space.
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Wavelet — Convolutional LSTM ﬁAlamos

Forward Wavelet
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Inverse Wavelet
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RESULTS

r=1,7=15 r=8T7T=15 r=32T=15 + Los Alamos
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Q-R plane morphology of

Small, Inertial and Large
Scales — Most stringent

LS N test of 3D turbulence.
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v Wavelet-CLSTM captures
Large scale features very well
— lesser accuracy at inertial
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10 scales.
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Errors in small scales due to
truncation of coefficients
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Convolutional Kernel Size is not just - LosAlamos
A hyperparameter....
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Coeff 1 — Highest Coeff 14 — Low Magnitude/ Small
Magnitude/Large Scales Scales

Kernel (3,3,3) fails. A larger Kernel (3,3,3) and (7,7,7) train
kernel (7,7,7) gives accurate well.

results

Relationship b/w Wavelet Scale size and Conv. Kernel size to build CNNs_.«
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Advantages: Wavelet-ConvLSTM ,,
» Los Alamos

*Analytical representation of wavelets greatly reduces cost. Wavetet s ——
thresholding can be studied independently before training a neural

network.

«Strong theoretical foundations for wavelets — helpful in interpreting
neural network predictions.

*HPC Workload: Training wavelet coefficients is embarrassingly
parallel - ZERO inter-node communication overhead due to wavelets
being locally adaptive and independent. Can be leveraged for very
large datasets.

Efficient learning: Neural networks learns much faster compared to
autoencoder representation — Efficient representation thru spatial
redundancy in wavelet basis.
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