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ABSTRACT

Building on recent research for prediction of hurricane trajectories using recur-
rent neural networks (RNN5s), we have developed improved methods and general-
ized the approach to predict a confidence interval region of the trajectory utilizing
Bayesian methods. Tropical storms are capable of causing severe damage, so
accurately predicting their trajectories can bring significant benefits to cities and
lives, especially as they grow more intense due to climate change effects. By
implementing the Bayesian confidence interval using dropout in an RNN, we im-
prove the actionability of the predictions, for example by estimating the areas to
evacuate in the landfall region. We used an RNN to predict the trajectory of the
storms at 6-hour intervals. We used latitude, longitude, windspeed, and pressure
features from a Statistical Hurricane Intensity Prediction Scheme (SHIPS) dataset
of about 500 tropical storms in the Atlantic Ocean. Our results show how neural
network dropout values affect our predictions and Bayesian intervals.

1 INTRODUCTION

We look at a dataset of tropical storm data in the Atlantic Ocean from 1982 to 2017 and perform
deep learning predictions with uncertainty bounds on trajectories of the storms. The result of these
storms, particularly the strongest ones called hurricanes, defined as having wind speeds exceeding
74 miles per hour, can be devastating because of their strong winds and heavy precipitation that can
cause dangerous tides. Tropical storms can cause major environmental disasters when they reach
land, such as the 2005 Hurricane Katrina that resulted in over 850 deaths and caused major economic
damage and the 2012 Hurricane Sandy that caused almost $70 billion in damage across much of the
eastern United States, with peak winds of 115 mph (Hurricane).

According to the National Oceanic and Atmospheric Administration (NOAA), it is likely that global
warming will cause hurricanes in the upcoming century to be more intense by 1 to 10% globally
(with higher peak winds and lower central pressures), which will result in a higher proportion of
more severe storms (NOAA).

Historically, hurricane trajectory predictions have used statistical methods that can be limiting be-
cause of the nonlinearity and complexity of atmospheric systems. Deep learning techniques and
specifically recurrent neural networks (RNNs) have grown in popularity in recent years as a strong
method for approaching prediction problems because of the ability to extract important features
and relationships from complex high-dimensional data, especially for forecasting and classifica-
tion (McDermott & Wiklel 2019). We implemented a number of improvements over previous deep
learning prediction work by|Alemany et al.|(2019), including predicting exact storm locations in lat-
itude/longitude instead of a grid value and using a prediction window that uses all previous hurricane
data rather than a fixed-size sliding window.

While hurricane trajectory predictions have seen improvements recently (SHIPS)), we build on pre-
vious work to include a fundamental uncertainty measure in the prediction for the first time as part
of a neural network framework. The uncertainty measure is especially valuable for understanding
a defined location range rather than only a point estimate, which is important for evacuation and
safety/preparation purposes. The National Hurricane Center (NHC) builds their uncertainty cone
such that % of historical forecast errors over the previous 5 years fall within the circle, whereas we
use a rigorous Bayesian prediction model to build our confidence intervals.
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2  QUANTIFYING UNCERTAINTY WITH A BAYESIAN RNN

Gal & Ghahramani| (2016azb)); |Gall (2016) showed that we can use a deep learning model that uses
dropout to model uncertainty by using the dropout in both the training and testing passes, without
the need for an inference framework (Appendix [B). This technique of interpreting dropout as a
Bayesian approximation of a deep Gaussian process provides a simple method for estimating the
confidence of a neural network output, in addition to the standard point estimate output. The key
idea with Bayesian RNN dropout is that weights have probability distributions rather than fixed point
estimates. We perform multiple forward passes of the network, each time with a new set of weights,
which result from a different set of dropouts during the prediction phase.

The authors showed that if dropout is seen as a variational Monte Carlo approximation to a Bayesian
posterior, then the natural way to apply it to recurrent layers is to generate a dropout mask that zeroes
out both feedforward and recurrent connections for each training sequence, but to keep the same
mask for each time step in the sequence as a form of variational inference (see Figures [I] and [2).
This varies from the naive way of applying dropout to RNNs, which would generate new dropout
masks for each input sample, regardless of which time sequence it was from.
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Figure 1: Standard RNN model Figure 2: Variational Bayes RNN model

By enabling dropout during the testing phase, every forward pass with a given input will result
in a different output. These non-deterministic predictions can be interpreted as samples from a
probabilistic distribution, i.e., a Bayesian approximation. By applying dropout to all the weight
layers in a neural network, we are essentially drawing each weight from a Bernoulli distribution.
This means that we can sample from the distribution by running several forward passes through
the network. By sampling from distributions of weights, we can evaluate the distribution of many
predictions, which informs the quality of the model and the uncertainty of the output. The more the
output varies when using dropout, the higher the model’s output uncertainty. The sample means and
variances of the output represent estimates of the predictive mean and variance of the model.

The NHC publishes a “Forecast Cone” that shows estimates for two times (e.g., 8AM and 8PM)
for each future day up to 5 days ahead. It shows a 67% confidence interval around the center of
the storm for each of those times. It is named a cone because the areas closest to the present time
are relatively thin due to having less uncertainty and the times more in the future are wider due to
having more uncertainty. The two main difficulties with this diagram style are that hurricanes can
be hundreds of miles wide, potentially wider than the cone itself, and that by definition of the 67%
confidence interval, about % of hurricanes will be outside of the cone (Cairo & Schlossberg,|2019).

The size of the circles is set so 67% of historical official forecast errors over the previous 5-year
sample fall within the circle. For 2019, a 24-hour forecast of an Atlantic hurricane would have
a 41 nautical mile probability circle. Our uncertainty interval instead uses fundamental Bayesian
techniques by performing multiple predictions using our model and evaluating according to the
mean and variance of these predictions. Additionally, we examine a variety of confidence interval
ranges up to 99%, which could be more useful since fewer hurricanes would be expected to be
outside of the interval.
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3 APPLYING THE MODEL TO ATLANTIC HURRICANES

We used the SHIPS dataset with data from Atlantic Ocean storms from 1982 to 2017 (SHIPS)). The
data contains 499 storms, with a large number of time series records for each storm and about 100
total features (not all are available for all storms). Each data point is given in six-hour timestep
intervals. The base features that we use are latitude, longitude, maximum surface wind (kt), mini-
mum sea level pressure (hPa), and calculated features of distance and direction (angle of travel) from
timestep to timestep. All fields are discretized relative to the storm center, which was determined
from the NHC best track. All atmospheric predictors are from the NCEP global model analyses.

Our model takes an input in the shape of the number of samples by the maximum hurricane length by
the number of features (6). We use 2 LSTM hidden layers with sizes of 32 and then 16, which isolate
important hidden dynamic features from the input data. Our output for the trajectory predictions are
latitude and longitude at the appropriate prediction timestep. Loss is computed using mean squared
error (MSE), which takes our predicted value for the location () and the labeled known value (y)
and computes MSE = (y — ¢)?. This is averaged over all predictions in the training dataset.

To implement this model, we use Keras and use the parameter dropout for input dropout W weights
and recurrent_dropout for hidden state dropout (U weights). Keras is automatically set up to keep
the same dropout masks over all timesteps as required by the Bayesian model. We trained over 200
epochs, at which point the model stopped improving. See Appendix [C|for implementation details.

After model training, we perform the prediction on our test set many times—we used 100 and 400
comparisons for our predictions. Each contains a matrix of predictions over every timestep in the
test set and each prediction is unique because of the dropout during testing. We use the D’ Agostino
and Pearson’s test that combines skew and kurtosis to produce an omnibus test of normality and
determine that the predictions are approximately normal. We then use the mean of the predictions
along with the standard deviation of the predictions as our uncertainty measure, allowing us to create
uncertainty bounds by using Z-scores for 67%, 90%, 95%, 98%, and 99% confidence intervals.

4 EXPERIMENTS

Our main experiments are predicting locations and confidence intervals over the SHIPS dataset. The
experiments are over our entire test set and we have also produced figures for Katrina specifically.

4.1 TRAJECTORY FORECAST RESULTS

Based on predicting normalized latitude and longitude points, we find the following MSE rates on
our test data for three dropout rates in Table[I]
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Figure 3: RNN forecast error compared to NHC error and GPRA target

We performed MSE calculations specifically on Katrina and Sandy. With dropout of 0.2, we had
MSE .0017 for Sandy and .0026 for Katrina. We find that higher dropout levels generally resulted in
worse MSE, suggesting that the model is not overfitting. |/Alemany et al.|(2019) used the same RNN
prediction techniques and show improvement relative to the National Hurricane Center (NHC) error
rates and Government Performance and Results Act (GPRA) target rates for 200312 (Figure [3).
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4.2 ANALYSIS OF UNCERTAINTY IN TRAJECTORY FORECASTS

We performed uncertainty forecasts on the test portion of our dataset and on two specific hurricanes.
Figures @H5| show 4 random predictions out of 100 total predictions made, along with the mean of
the 100 predictions and the true values. This illustrates the variability in the individual predictions
caused by using dropout. We show figures for latitude and longitude for Katrina. Next we show
confidence intervals for latitude and longitude from 100 predictions using their mean, standard de-
viation, and the relevant Z-score. We show lines for the true values and the mean of our predictions,
along with bounds on 67%, 90%, 95%, 98%, and 99% confidence intervals on Katrina (Figures.

Figure 4: Katrina latitude predictions Figure 5: Katrina longitude predictions

Hurricane Katrina Longitude Confidence Intervals

Figure 6: Katrina latitude confidence intervals ~ Figure 7: Katrina longitude confidence intervals

Our evaluation metric for the confidence intervals is to compute the percentage of points over a
specific sample or specific hurricane that actually fit within each of the computed confidence interval
bands over every timestep of that sample or hurricane. For the main test set we also performed an
experiment with 400 predictions in addition to 100, but the effect was negligible. However, increased
dropout, which produces more variance in the predictions (although gives the overall model a worse
MSE) leads to significantly improved uncertainty estimates. Table[2|shows results using 0.2 dropout
over the test set, and results for other dropout rates are in Appendil)%lg

0.2 dropout test set | 67% | 90% | 95% | 98% | 99 %
100 Latitude 61.1 | 82.0 | 87.0 | 90.9 | 93.0
400 Latitude 61.2 | 824 | 873 | 91.2 | 934

100 Longitude 66.3 | 843 | 88.6 | 922 | 939
400 Longitude 66.2 | 84.6 | 88.8 | 92.0 | 94.1

Table 2: Percentage of latitude and longitude data within predicted region for different confidence
levels and numbers of predictions using 0.2 dropout.

The 0.1 dropout rate underfits the confidence intervals due to a lack of variation in the predictions.
The 0.5 dropout rate produces worse results and has a large variance in the predictions such that the
confidence intervals are too large, even larger than the intended sizes (e.g., 100 latitude predictions
fits 76.4% of data rather than 67%). We determine that 0.2 is the best medium that results in strong
error rates and confidence intervals and use this dropout for our individual hurricane predictions.

5 CONCLUSION

We produced a storm prediction model capable of strong trajectory predictions. By implementing a
rigorous uncertainty bound, we add significant value relative to point estimates that were predicted
in previous work and an important alternative to the uncertainty bounds produced by the NHC that
are based on recent historical data. The confidence bounds agree closely with our predicted intervals.
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B RNNS AND DROPOUT

RNNSs are fully connected networks, which use connection weights as training parameters. The
standard RNN setup uses inputs over time that are connected to hidden layers. The hidden layers
connect forward to the next hidden layer or output layer and also through time to the next hidden
layer timestep. The n, dimensional output vector Y; corresponds to the original n, dimensional
input vector X; by:

Yy = g(V * he)

where h; is the final n;, dimensional vector of hidden state variables, V' is the n, x n;, weight matrix,
and the function ¢(.) is an activation function that maps between the output and hidden states. The
hidden layers are defined as follows:

ht = f(W*ht,1 +U*Xt)

where W is an nj, x ny weight matrix, U is an np, X n, weight matrix, and the function f(.) is the
activation function for the hidden layers, which creates the nonlinearity in the neural network.
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Deep learning methods are known to overfit, which results in an inability of the model to generalize
properly. We use dropout to regularize the network and prevent this overfitting. Dropping neurons
randomly during training is known to reduce the generalization error.

By making the presence of hidden units unreliable, dropout prevents co-adaptions amongst the
nodes, and promotes each to be more robust and to produce more useful features on its own without
relying on other hidden units (Srivastava et al.,|2014). Dropout is a common technique in which a
hyperparameter with a set percentage is given as the percentage number of neurons to set to O (i.e.,
to dropout) during the training passes. Large dropout rates can lead to divergence, while small rates
can result in insignificant effects. In the next section we show that additionally using dropout during
training approximates Bayesian inference in a deep Gaussian process.

Srivastava et al.| (2014) note that in the simplest case, each hidden unit is retained with a fixed
probability p independent of other units, where p can be chosen using a validation set or can simply
be set at 0.5, which seems to be close to optimal for a wide range of networks and tasks. For the
input units, however, the optimal probability of retention is “usually closer to 1 than to 0.5.”

We used Long Short-Term Memory Cells (LSTM) in our RNN, whose main purpose is to remem-
ber values over arbitrary time intervals by preventing vanishing and exploding weights throughout
the RNN. LSTMs have been shown to significantly improve RNN performance when applications
require long-range reasoning. Storm models that span up to 120 hours in length are a good fit for
the LSTM model (Alemany et al.,2019).

In general, estimating posterior densities of weights using Bayes’ rule is difficult because of the need
to marginalize over all possible values that the weight parameter can take in the model. A Gaussian
prior on the weights is generally used, p(w) = N (0, 1).

C plany | w)p(w)
plw | @y) = ey Tw) plw)dw

This process is equivalent to variational inference in Gaussian processes, i.e., by averaging the for-
ward passes through the network, this is equivalent to Monte Carlo integration over a Gaussian
process posterior approximation. Variational inference is an approach for approximating a model’s
posterior that would be otherwise difficult to work with directly. By minimizing the Kulback-Leibler
(KL) divergence between an approximating variational distribution gg(w) and p(w | z,y), we can
estimate our original predictive distribution for new input x*

p(y* | 2%, X,Y) = /p(y* | %, w)p(w | X,Y)dw

o go(y* [ 27) = /p(y* | 2%, w)qo(w)dw,
which can be approximated at prediction time by

T

* * 1 * *
Gy | ")~ = Y p" | 2" wr).
t=1

C IMPLEMENTATION DETAILS

All hurricanes in the dataset were shuffled (i.e., each hurricane remained complete, but the order
of hurricanes was randomized) to ensure that the training and test sets don’t contain only older or
newer data. All features are then min-max normalized prior to training.

We build our training and test set input with 3 main parameters: min_to_start_predictions, predic-
tion_length, and max_hurricanes. The first parameter determines how many preliminary timesteps
are seen before any predictions begin. This is used so all predictions have some reasonable basis
and is justified because we assume some time is needed to detect the storm. The second is the length
of the predictions beyond the input data (e.g., 1 timestep is a 6-hour prediction using all previous
input data and 4 timesteps is a 24-hour prediction). The final parameter is fixed at the length of the
longest hurricane (89 timesteps in this dataset), such that each model input is this length minus the
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prediction length minus the minimum prediction start, and shorter inputs are padded with Os. The
labeled data is taken from the corresponding value being predicted (latitude and longitude) at the
timestep of the prediction. The inputs and labels are constructed for each hurricane separately and
then we input all of the data into the network to evaluate the overall error rates.

We used the following parameters for our experiments:

* Test set size: 0.25

* Validation set size: 0.25

» Batch size: 64

Epochs: 200

e Optimizer: Adam with default parameters (LR 0.001)
Recurrent dropout: 0.1

Dropout: Experiments with 0.1/0.2/0.5

D DRoOPOUT COMPARISON

0.1 dropout test set | 67% | 90% | 95% | 98% | 99 %
100 Latitude 51.0 | 72.0 | 78.5 | 84.3 | 87.0
400 Latitude 51.7172.1|78.6 | 848|874

100 Longitude 64.5 | 83.1 | 87.3 | 90.7 | 92.0
400 Longitude 64.9 | 83.5 | 87.5|90.7 | 92.2

Table 3: Percentage of latitude and longitude data within predicted region for different confidence
levels and numbers of predictions using 0.1 dropout.

0.5 dropout test set | 67% | 90% | 95% | 98% | 99 %
100 Latitude 764 1 91.7 | 94.2 1 96.2 | 97.0
400 Latitude 77.1192.0]943|96.2 | 97.1

100 Longitude 82.0 | 943 1959 | 97.5 | 98.0
400 Longitude 82519421962 |97.7 | 98.2

Table 4: Percentage of latitude and longitude data within predicted region for different confidence
levels and numbers of predictions using 0.5 dropout.
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