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(1) Motivation



Global Climate Models (GCMs)

* GCMs had huge success in simulating the earth’s weather, energy
balance, and predicting possible changes in climate!
including but not limited to:

[Henderson and Sellers, 1985]

changes in precipitation* increases in temperatures**  acceleration in glacial melting™***

* One of the key physical principles these models rely on is the Earth’s energy balance

* USGS water science school  ** Future impacts of climate change on forests *** scientificamerican.com



https://www.usgs.gov/special-topic/water-science-school
https://www.weadapt.org/knowledge-base/forests-and-climate-change/future-impacts-of-climate-change-on-forests
https://www.scientificamerican.com/article/why-are-glaciers-melting-from-the-bottom-its-complicated/

Clouds modeling and earth’s energy balance

* Clouds play an important role in earth’s energy balance

as they both reflect energy coming to the Earth and the
infrared radiations it emits

However, as physical processes at play in cloud
composition and evolution typically range from 10®to

10 m, direct simulation of their behavior can consume
up to 20% of a GCM’s computations: 5 ¢l

Modeling clouds accurately using GCMs is challenging and expensive.
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[Schneider, Stephen H. "Climate modeling." Scientific American 256.5 (1987): 72-T9]




Cloud modeling computational complexity

Various efforts have tried to address this challenge such as:
* Incorporate more domain knowledge

* super-parameterization (modeling sub-grids)

Vv Machine learning (model sub-grid using meteorological variables) 1789 10



(2) Approach



Narrowing down the clouds modeling challenge

@ in our approach we propose modeling Cloud Reflectance Fields (CRFs) using conditional Generative
Adversarial Networks (GANSs)

* We suggest using the generated CRFs as a proxy from which we can extract important cloud parameters
such as optical depth and integrate these parameters into GCMs (it is not an alternative to GCMs)

* We believe our approach is a step towards building a data-driven framework that can reduce the
computational complexity in traditional cloud modeling techniques.



Approach: overview

* We use GAN to generate cloud reflectance fields conditioned on meteorological variables, taking the climate
chaotic nature into consideration.

Extract important cloud
parameters such as

optical depth

Conditional
GAN

Meteorological variables

Cloud reflectance fields



Approach: Data

* Training data: 3100 aligned sample pairs X = {m; r;}

* Independent variable (m;) ™ : is a 44 x 256 x 256 matrix, representing 42 measurements from NASA’s
MERRA-212 along with longitude and latitude to account for the Earth’s movement relative to the satellite.

* Dependent variable (r;) D: is a 3 x 256 x 256 matrix representing each location’s reflectance at RGB
wavelengths (680, 550 and 450 nm) as measured by the Aqua dataset 29,



(3) Methodology



Architecture: Generator

* U-Net generator 111 " :
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Architecture: Discriminator

* Multi-scale discriminator (13

» Better guide for the generator both in the scale of global context and finer details in the image.

Medium scale e.g. Continents and oceans Global scale e.g. earth
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Training objective

Total GAN loss

S

» <&

A1 * Non saturating adversarial loss A, * Matching loss (el

Less blurry output than L, loss

Least square loss (LSGAN) 4 Hinge loss 0
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Challenges: Optimization

e Adam/SGD

* Extra_SGDu7
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see code at https://github.com/GauthierGidel/Variational-Inequality-GAN



https://github.com/GauthierGidel/Variational-Inequality-GAN

Challenges: Regression vs. hallucinated features

— [0.5, 0]
* behave more like supervised regression problem

2k 4k 6k
[1, 10] (a) Lt matching loss

\ . . . .
 more freedom to explore the distribution of interest

* hallucinate features on cost of low frequency features




Challenges: Sharpness of generated images

* Prematurely saturated learning (Nash equilibrium) ts!

“ IS W

(a) L* matching loss (b)) Generator loss  (c) Discriminator loss (d) fake (e) real

« Carefully choose the discriminator learning rate! @



(4) Results



Visual Analysis

* Generated images look difficult to distinguish from true

samples with average L, distance ~ 0.027 on validation set.

Generated Real Generated Real
(left) (right) (left) (right)

* Validation set is set to 5 samples that are selected manually
to capture different regions of the rotating earth.

* Generate 15 samples in total: 3 for each validation sample. " o

(d)
Model inference on never seen examples



Visual Analysis: Quantifying ensemble diversity

* For each ensemble generation we calculate:
* Pixel-wise mean
e Standard deviation
* Inter-quartile range (IQR)

Ensemble generation conditioned on the same input

* Tradeoff (generation quality € generation diversity)




Spectral Analysis

* Visual inspection is an expensive, cumbersome, and subjective measure!

e Spectral analysis:

V/Similar DFT distributions but there is still room for improvement
\/Very small average L2 loss of 0.006 per frequency component.
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What’s next?

* Blurriness and small size checkerboard artifacts:

d More training samples

(J More hyperparameter tuning —> avoid prematurely saturated learning.

!

MW

 Longer training i



What’s next?

e Exploit temporal structure -2
O Add date and time as extra labels to the input variable.
o Using nested temporal cross validation to predict possible changes in cloud distribution over time.

® Increase the diversity in the generated ensembles. ‘€
O Incorporate input noise channels as an extra source of stochasticity
o Address mode collapse by using decaying A2

/12 =eXp(-t) Az |

epochs

e Modeling low clouds a key source of uncertainty in our ability to project future climate changes 121



Appendix A: Data

Table 1: Description of input components

Name Description Number of channels
U,V Wind components in 10 atmospheric levels 20

T Temperature in 10 atmospheric levels 10

RH Relative-humidity in 10 atmospheric levels 10

SA Scattering angle 1

TS Surface Temperature 1

Lat, Long Latitude and Longitude 2




Appendix B: Data processing

Sensor noise Winsorization - clip CRFs to the 95t percentile.

Standardization

Avoid introducing unnecessary bias in the data distribution by the values outside the earth disk

O Reduce them by zooming (crop & then resize using 2D nearest neighbor)
O Replace other remaining values with -3 (mean - 3x standard deviation)

Use running statistics - mitigate shortage of GPU memory budget

Use 12 data loader workers - speed up the data loading process 6x
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Appendix C: Hyperparameters

(a) L1 matching loss (b) Total weighted generator loss

Figure 4: Comparison between the hing loss shown in green and the least squares loss shown in
purple on model training stability and convergence, we can observe that the latter is performing better
both in optimization of the L1 loss and the total weighted generator loss
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