
Modeling Cloud Reflectance Fields Using 
Condi4onal Genera4ve Adversarial  

Networks

Victor Schmidt, Mustafa Alghali, Kris Sankaran, Tianle Yuan, Yoshua Bengio.

ICLR-CCAI 2020

All code and hyperparameters may be found at https://github.com/krisrs1128/clouds_dist

https://github.com/krisrs1128/clouds_dist


(1) Mo4va4on



Global Climate Models (GCMs)

• GCMs had huge success in simula1ng the earth’s weather, energy 
balance, and predic1ng possible changes in climate[1]

including but not limited to:

[Henderson and Sellers, 1985]

• One of the key physical principles these models rely on is the Earth’s energy balance[2]
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Clouds modeling and earth’s energy balance

• Clouds play an important role in earth’s energy balance 
as they both reflect energy coming to the Earth and the 
infrared radiations it emits.[3]

• However, as physical processes at play in cloud 
composition and evolution typically range from 10-6 to 
106 m, direct simulation of their behavior can consume 
up to 20% of a GCM’s computations.[4, 5, 6]

[Schneider, Stephen H. "Climate modeling." Scientific American 256.5 (1987): 72-T9]

• Modeling clouds accurately using GCMs is challenging and expensive.



Cloud modeling computa0onal complexity
Various efforts have tried to address this challenge such as:

• Incorporate more domain knowledge 

• super-parameteriza1on (modeling sub-grids)

✔Machine learning (model sub-grid using meteorological variables) [7, 8, 9, 10]



(2) Approach



Narrowing down the clouds modeling challenge

🎯In our approach we propose modeling Cloud Reflectance Fields (CRFs) using conditional Generative 
Adversarial Networks (GANs) 

• We suggest using the generated CRFs as a proxy from which we can extract important cloud parameters 
such as optical depth and integrate these parameters into GCMs (it is not an alternative to GCMs) 

• We believe our approach is a step towards building a data-driven framework that can reduce the 
computational complexity in traditional cloud modeling techniques. 



Approach: overview
• We use GAN to generate cloud reflectance fields condi1oned on meteorological variables, taking the climate 

chao1c nature into considera1on.

•
•
•
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Approach: Data
• Training data: 3100 aligned sample pairs X = {mi , ri} 

• Independent variable (mi) 🌡 :  is a 44 × 256 × 256 matrix, represen1ng 42 measurements from NASA’s 
MERRA-2[19] along with longitude and la1tude to account for the Earth’s movement rela1ve to the satellite.  

• Dependent variable (ri) 🌏: is a 3 × 256 × 256 matrix represen1ng each loca1on’s reflectance at RGB 
wavelengths (680, 550 and 450 nm) as measured by the Aqua dataset [20].



(3) Methodology



Architecture: Generator 
• U-Net generator [11]

• Skip connec1ons help localiza1on
• reduce the need for larger training set

• Checkerboard ar2facts [12]

• Upsampling followed by a convolu1on instead of transposed 
convolu1on 

∼ 1.4 million parameters 



Architecture: Discriminator 
• Multi-scale discriminator [13]

• Better guide for the generator both in the scale of global context and finer details in the image.

{Real, 
Generated}

∼ 8.3 million parameters 

Global scale e.g. earth 
disk

Medium scale e.g. Con2nents and oceans

Finer structure e.g. cloud shapes and edges



Training objec0ve 
Total GAN loss

Least square loss (LSGAN) [14]
Hinge loss [15]

Less blurry output than L2 loss 



Challenges: Op=miza=on
• Adam/SGD

• Extra_SGD [17]

✔ Extra-Adam [17]

see code at h;ps://github.com/GauthierGidel/VariaAonal-Inequality-GAN

https://github.com/GauthierGidel/Variational-Inequality-GAN


Challenges: Regression vs. hallucinated features 



Challenges: Sharpness of generated images 

• Prematurely saturated learning (Nash equilibrium) [18] 

• Carefully choose the discriminator learning rate! 🎯



(4) Results 



Visual Analysis

Generated 
(left)

• Generated images look difficult to dis1nguish from true 

samples with average L2 distance ~ 0.027 on valida1on set.

• Valida1on set is set to 5 samples that are selected manually 
to capture different regions of the rota1ng earth.

• Generate 15 samples in total: 3 for each valida1on sample. 
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Model inference on never seen examples



Visual Analysis: Quan=fying ensemble diversity

• For each ensemble genera1on we calculate: 
• Pixel-wise mean
• Standard devia1on
• Inter-quar1le range (IQR)

• Tradeoff (genera1on quality ↔ genera1on diversity) 

Ensemble generation conditioned on the same input



Spectral Analysis
• Visual inspec1on is an expensive, cumbersome, and subjec1ve measure!
• Spectral analysis:
✔Similar DFT distribu1ons but there is s1ll room for improvement
✔Very small average L2 loss of 0.006 per frequency component. 
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What’s next?

• Blurriness and small size checkerboard ar1facts:

❑More training samples

❑More hyperparameter tuning → avoid prematurely saturated learning. 

❑Longer training



What’s next?
● Exploit temporal structure 🕓:

○ Add date and 1me as extra labels to the input variable.
○ Using nested temporal cross valida1on to predict possible changes in cloud distribu1on over 1me.

● Increase the diversity in the generated ensembles.🎨
○ Incorporate input noise channels as an extra source of stochas1city
○ Address mode collapse by using decaying λ2 

𝜆! =exp(-t)

● Modeling low clouds a key source of uncertainty in our ability to project future climate changes [21]

epochs



Appendix A: Data 



Appendix B: Data processing
• Sensor noise Winsorization →  clip CRFs to the 95th percentile.

• Standardization 

• Avoid introducing unnecessary bias in the data distribution by the values outside the earth disk
o Reduce them by zooming (crop & then resize using 2D nearest neighbor) 
o Replace other remaining values with -3 (mean - 3x standard deviation) 

• Use running statistics →  mitigate shortage of GPU memory budget 

• Use 12 data loader workers →  speed up the data loading process 6x



Appendix C: Hyperparameters
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