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ABSTRACT

Accurate weather forecasts are a crucial prerequisite for climate change adapta-
tion. Can these be provided by deep learning? First studies show promise, but the
lack of a common dataset and evaluation metrics make inter-comparison between
the proposed models difficult. In fact, despite the recent research surge in data-
driven weather forecasting, there is currently no standard approach for evaluating
the proposed models. Here we introduce WeatherBench, a benchmark dataset for
data-driven medium-range weather forecasting. We provide data derived from an
archive of assimilated earth observations for the last 40 years that has been pro-
cessed to facilitate the use in machine learning models. We propose a simple and
clear evaluation metric which will enable a direct comparison between different
proposed methods. Further, we provide baseline scores from simple linear re-
gression techniques, purely physical forecasting models as well as existing deep
learning weather forecasting models. All data and code are made publicly avail-
able along with tutorials for getting started. We believe WeatherBench will pro-
vide a useful and reproducible way of evaluating data-driven weather forecasting
models and we hope that it will accelerate research in this direction.

1 INTRODUCTION

Extreme weather events are the most immediate and threatening consequence of climate change to
human life, property, agricultural production and natural capital (Bouwer, 2019). As the frequency
of extreme weather events increases, it becomes clear that accurate weather forecasts will play a cru-
cial role in local and national crisis management planning and climate adaptation decision-making.
Currently, these forecasts are generated using physics-based computer simulations, in which the
governing equations (or our best approximation thereof) of the atmosphere and ocean are solved
on a discrete numerical grid. These models are generally effective, but computationally expensive.
They also perform poorly when it comes to the prediction of extreme events. If data-driven models
were able to learn a more efficient representation of the underlying dynamical and physical equa-
tions, they would enable computationally cheaper forecasts. This could help improve the probability
estimation of extreme events through large ensemble (Monte-Carlo) simulations. It is also possible
that by using a diverse set of data sources, data driven models can outperform physical models in
areas where the latter struggle, for example predicting rainfall over Africa (Vogel et al., 2018).

In the last couple of years, several studies have pioneered data-driven forecasting methods (Dueben
& Bauer, 2018; Scher, 2018; Scher & Messori, 2019; Weyn et al., 2019). These studies considered
different settings of general circulation models at different resolutions to be ground truth, and used
these simulations to train different neural network architectures evaluated using different metrics.
The differences of the proposed methods already highlight the importance of a common benchmark
case to compare prediction skill. In particular, benchmark datasets can have a huge impact because
they make different algorithms inter-comparable and foster constructive competition, particularly in
a nascent direction of research.
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Here, we introduce WeatherBench, the first benchmark problem for data-driven weather forecast-
ing. Our initial release provides a ready-to-use dataset for download along with specific metrics to
compare different approaches. In this paper, we describe the dataset and evaluation metrics. We
show how one can use WeatherBench to perform two types of forecasting experiments: a direct
forecast and an iterative forecast. We also provide several baseline models and highlight directions
for further research.

2 BENCHMARK OVERVIEW

The main goal of WeatherBench is to evaluate deep learning models for global medium-range (i.e.
several days to two weeks) weather forecasting. By specifying a target variable and a target horizon,
WeatherBench allows experimentation and evaluation of new model architectures. For this initial
release, we use the ERA5 reanalysis dataset (C3S, 2017) for training, evaluating (1979-2016) and
testing (2017-2018). Reanalysis datasets provide the best guess of the atmospheric state at any
point in time by combining a forecast model with the available observations. We regrid the data
from its original resolution, which comprises several Terabytes, to lower resolutions using bilinear
interpolation. This is a more realistic use case, since very high resolutions are hard to handle for most
deep learning models because of GPU memory constraints and I/O speed. In particular, we chose
5.625◦ (32×64 grid points), 2.8125◦ (64×128 grid points) and 1.40525◦ (128×256 grid points)
degrees latitude by longitude. Further, for 3D fields we selected 10 vertical levels, varying from 1 to
1000 hPa.

The available variables were chosen based on meteorological considerations. Geopotential, temper-
ature, humidity and wind are prognostic state variables in most physical numerical weather predic-
tion (NWP) and climate models, and were hence included along with horizontal relative vorticity
and potential vorticity. In addition to the 3D fields, we also include 2D fields: 2 meter-temperature,
10 meter wind, total cloud cover, precipitation and top-of-atmosphere incoming solar radiation. Fur-
ther, there are several potentially important time-invariant fields: the land-sea mask, the soil type and
the topography.

Evaluation is done for the years 2017 and 2018, for a 5.625◦ resolution. This means that predictions
at higher resolutions have to be downscaled to the evaluation resolution. We also evaluated some
baselines at higher resolutions and found that the scores were almost identical with differences
smaller than 1%. Therefore we are reassured that little information is lost by evaluating at a coarser
resolution.

We chose 500 hPa geopotential and 850 hPa temperature as primary verification fields. Geopotential
at 500 hPa pressure, typically denoted as Z500 or Φ with units of m2s−2, defined as

Φ =

∫ z at 500hPa

0

g dz′ (1)

where z describes height in meters and g = 9.81 m s−2 is the gravitational acceleration, is a com-
monly used variable that encodes the synoptic-scale pressure distribution. It is the standard ver-
ification variable for most medium-range NWP models. We picked 850 hPa temperature as our
secondary verification field because temperature is a more impact-related variable. 850 hPa is usu-
ally above the planetary boundary layer and therefore not affected by diurnal variations but provides
information about broader temperature trends, including cold spells and heat waves.

We chose the root mean squared error (RMSE) as a metric because it is easy to compute and mirrors
the loss used for many ML applications. We define the RMSE as the mean latitude-weighted RMSE
over all forecasts:

RMSE =
1

Nforecasts

Nforecasts∑
i

√√√√ 1

NlatNlon
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j
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k

L(j)(fi,j,k − ti,j,k)2 (2)

where f is the model forecast and t is the ERA5 truth. L(j) is the latitude weighting factor for the
latitude at the jth latitude index:

L(j) =
cos(lat(j))

1
Nlat

∑Nlat
j cos(lat(j))

(3)
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Table 1: Baseline scores for 3 and 5 days (3/5 days) forecast time at 5.625◦ resolution. Best machine
learning model and operational baseline are highlighted.

Baseline Z500 RMSE [m2 s−2] T850 RMSE [K]
Persistence 936 / 1033 4.23 / 4.56
Climatology 1075 5.51
Weekly climatology 816 3.50
Linear regression (direct) 714 / 814 3.19 / 3.52
Linear regression (iterative) 719 / 812 3.17 / 3.48
CNN (direct) 626 / 757 2.87 / 3.37
CNN (iterative) 1114 / 1559 4.48 / 9.69
IFS T42 489 / 743 3.09 / 3.83
IFS T63 268 / 463 1.85 / 2.52
Operational IFS 153 / 334 1.36 / 2.03

Instructions for downloading the data, as well as all code are available in the Github repository1.
The repository also contains all scripts for downloading and processing of the data. This enables
users to download additional variables or regrid the data to a different resolution. We intend for
WeatherBench to be open and evolving, as opposed to a fixed snapshot in time. We encourage
contributions of new data pre-processing pipelines, alternative baseline architectures such as recur-
rent layers and/or attention layers, and evaluation metrics. We hope the benchmark will incite a
community discussion around the existing data-driven weather forecasting models and inspire new
architectures and tasks.

3 BASELINES

To evaluate the skill of a forecasting model it is important to have baselines to compare to. The
two simplest possible forecasts one can consider are a) a persistence forecast in which the fields
at initialization time are used as forecasts (”tomorrow’s weather is today’s weather”), and b) two
climatological forecasts: a single mean is computed over all times in the training set (1979 – 2016)
and a mean is computed for each of the 52 calendar weeks in the training set. In addition, considering
that the gold standard of medium-range NWP is the operational IFS (Integrated Forecast System)
model of the European Center for Medium-range Weather Forecasting (ECMWF), we present scores
for the operational IFS 2016–2018 forecasts, regridded to 5.625. We also ran the IFS model at a
lower resolution (T42 ≈ 2.8◦ and T43 ≈ 1.9◦) to provide an intermediate target for data-driven
methods.

Finally, we consider two purely data-driven baselines. We start by fitting a simple linear regression
model to directly predict the Z500 and T850 fields at different lead times, 3 days and 5 days. Then,
we train a five-layers fully convolutional neural network. Each hidden layer has 64 channels with
a convolutional kernel of size 5 and ELU activations (Clevert et al., 2015). The input and output
layers have two channels, representing Z500 and T850. The model was trained using the Adam
optimizer (Kingma & Ba, 2014) and a mean squared error loss function. We implemented periodic
convolutions in the longitude direction but not the latitude direction.

We trained the machine learning baselines a) to directly predict the fields 3 and 5 days ahead and b)
to make a 6 hour prediction, which we use to create an iterative forecast. For these iterative forecasts
the model takes its previous output as input for the next forecast. To create a 5 day iterative forecast
the model trained to predict 6 hour forecasts is called 20 times. The advantage of iterative forecasts
is that a single model is able to make predictions for any forecast time rather than having to train
several models.

Table 1 shows the RMSE of the different baseline models. The weekly climatology is significantly
better than the standard climatological forecast, approximately matching the persistence forecast
between 1 and 2 days, since it takes into account the seasonal cycle. For the linear model, the

1https://anonymous.4open.science/r/6bb0b0c0-e929-4fa0-a7b7-a42361bcf7dd/
hosts the anonymized repositery. Upon acceptance, the full repository and data will be released.
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Figure 1: Example fields for 5 day forecasts of 850 hPa temperature initialized at 2017-01-01 00UTC
for 850 hPa temperature. (Left) Truth, bottom row shows difference to initial condition. CNN
(middle) and operational IFS (right) forecasts. Bottom row shows errors relative to truth.

iterative forecast performs just as well as the direct forecast due to its linear nature. At 5 days, the
linear regression forecast is about as good as the weekly climatology. The direct CNN forecasts beat
the linear regression forecasts for 3 and 5 days forecast time. However, at 5 days these forecasts are
only marginally better than the weekly climatology. The iterative CNN forecast performs well up
to around 1.5 days but then the network’s errors grow non-linearly. Note, however, that the simple
CNN trained for this baseline is to be seen simply as a starting point for more complex models.

Fig. 1 shows an example forecasts of temperature. The ERA5 temporal differences show smaller
variability in the tropics compared to the extratropics where propagating fronts can cause rapid
changes in temperature. The CNN forecast is noticeably smoother than the truth or the physical
forecast. This likely has two reasons: first, the baseline model likely is not powerful enough to make
a good prediction including small scale details; second, at 5 days forecast time the atmosphere is
slightly chaotic. In face of such uncertainty, a MSE loss will push the network to predict the mean
of the distribution rather than a realistic realization. These two issues should be addressed in future
work on this dataset.

4 DISCUSSION AND CONCLUSION

One important aspect that is not currently addressed by this benchmark is probabilistic forecasting.
Because of the chaotic evolution of the atmosphere, it is very important to also have an estimate of
the uncertainty of a forecast. Extending this benchmark to probabilistic forecasting simply requires
computing a probabilistic score. How to produce probabilistic data-driven forecasts is a very inter-
esting research question in its own right. For the forecast times targeted in the benchmark it still
makes sense to look at deterministic forecasts.

A related issue is the question of extreme weather situations. These events are, by definition, rare,
which means that they will contribute little to regular verification metrics like the RMSE. However,
for society these events are highly important. For this reason, it would make sense to evaluate
extreme situations separately. But defining extremes is ambiguous which is why there is no standard
metric for evaluating extremes. The goal of this benchmark is to provide a simple, clear problem.
Therefore, we decided to omit extremes in this initial release but users are encouraged to choose and
contribute their own verification of extremes.

There is a wide variety of promising research directions for data-driven weather forecasting. The
most obvious direction is to increase the amount of data used for training and the complexity of the
network architecture. WeatherBench provides a, so far, unexploited volume and diversity of data for
training. It is up to future research to find out exactly which combination of variables will turn out
to be useful. Further, this dataset offers a four times higher horizontal resolution than all previous
studies. We intend to keep WeatherBench up-to-date and enrich it with new learning tasks. The
hope is that this data will enable researchers to train more complex models than have previously
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been used and that it will foster collaboration between atmospheric and data scientists in the ways
we imagined and beyond.
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