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Abstract

Energy use in buildings account for approximately
half of global electricity consumption and a signif-
icant amount of C'O5 emissions. Often, the higher
energy usage in buildings are accounted to old and
poorly maintained infrastructure and equipments.
On the other hand, Smart buildings are capable of
achieving energy efficiency by using intelligent
services such as indoor positioning, personalized
lighting, demand-based heating ventilation and
air-conditioning, automatic fault detection and re-
covery etc. However, most buildings nowadays
lack the basic components and infrastructure to
support such services. The investment decision
of intelligent system design and retrofit can be a
daunting task, because it involves both hardware
(sensors, actuators, servers) and software (oper-
ating systems, service algorithms), which have
issues of compatibility, functionality constraints,
and opportunities of co-design of synergy. Our
work proposes a user-oriented investment deci-
sion toolset using optimization and machine learn-
ing techniques aimed at handling the complex-
ity of exploration in the large design space and
to enhance cost-effectiveness, energy efficiency,
and human-centric values. The toolset is demon-
strated in a case study to retrofit a medium-sized
building, where it is shown to propose a design
that significantly lowers the overall investment
cost while achieving user specifications.

1. Introduction

Buildings, both residential and commercial, account for
more than 50% of global electricity consumption and are
also responsible for 40% of worldwide C'O5 emissions (Al-
louhi et al., 2015). Often, the excessive usage of energy and
subsequent energy inefficiency in buildings is accredited to

"Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, CA “Lawrence Berkeley Na-
tional Laboratory, Berkeley, CA.

Hari Prasanna Das

! Wei Feng? Costas J. Spanos '

old and poorly maintained infrastructure and equipments.
A growing body of research (Deconinck & Roels, 2016;
Mills, 2009) confirms that retrofitting residential buildings
to make them smart provides a net reduction in carbon and
energy use, as well as monetary savings. Smart buildings
are energy-cyber-physical systems, which engage physi-
cal infrastructure with cyber computation to promote en-
ergy efficiency, grid reliability, and human-centric values
such as comfort (Liu et al., 2019; 2018), productivity and
well-being of occupants. In the past decade, remarkable
progress has been made in aspects of sensing technology,
data-analytics and learning (Sun et al., 2016; Konstanta-
kopoulos et al., 2019; Das et al., 2019), and advanced con-
trol strategies(Dounis & Caraiscos, 2009). Emerging smart
building services include indoor positioning (Zou et al.,
2017), occupancy detection (Zou et al., 2019b;a), demand-
based and personalized heating ventilation and air condi-
tioning (HVAC) control (Nguyen & Aiello, 2013), just to
name a few.

While these technologies have been demonstrated in re-
search labs and few selected buildings, their public access
in the majority of real-world buildings is still limited. One
key bottleneck is that an intelligent system of sensing, learn-
ing, decision-making, and control capability is required to
support these applications. Take occupancy detection as an
example. To infer how many people are in the room, one
reliable approach is to continuously monitor indoor environ-
mental parameters, such as temperature, humidity, and CO2
concentrations. The measurement data are then uploaded
wirelessly to a local/cloud server for analytics, and the re-
sults are forwarded to a building operation system (BOS) to
further control HVAC and lighting systems. If the building
owner were to enable this intelligent service, he/she needs to
ensure the availability of both physical infrastructures (i.e.,
sensors, servers, HVAC and lighting network-enabled actu-
ators) and compatible software (i.e., occupancy detection
algorithm, BOS).

Due to the numerous choices of sensors and actuators, and
the rich set of software and control strategies, the design
space is exponentially large to explore. The investment
decision making is a complicated process, involving estima-
tion of capital expenditure (HVAC, lighting retrofit, access
control system, server, etc.) and operation cost (electricity,
heating annual consumption, system maintenance), satisfac-
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Figure 1. Proposed BISCUIT Framework

tion of user specifications (e.g., privacy concerns, human-
building interaction features), device compatibility (e.g.,
vendor system inter-operability) etc. But with recent devel-
opment in machine learning and optimization technologies,
it is possible to effectively search the exploration space and
come up with optimal choice for building retrofits, which
has environmental benefits (as it achieves energy efficiency
in the buildings) as well as monetary benefits (savings in
energy). In this research, we combine machine learning and
optimization techniques with building retrofit concepts to
present a toolset, named BISCUIT with multiple building
libraries and an optimization kernel at its core to assist cus-
tomers (building owners) decide the choice of retrofit in a
conscious manner, both energy and moneywise. The goals
of BISCUIT are

e Promote energy efficiency and human-centric design in
buildings, helpful in tackling issues related to climate
change with green energy

e Save investment costs for building owners by exploit-
ing potential infrastructure sharing and advanced con-
trol strategies

2. Related Work

Whole building design is an integrated approach to address
multiple performance metrics, such as cost effectiveness,
efficiency, functionality, sustainability and safety (Kibert,
2016; Prowler & Vierra, 2008). It is a conceptual framework
to meet the need for a building through planning, design,
construction, and operation (Prowler & Vierra, 2008). Sev-
eral aspects have been discussed in Kibert (2016), including
low-energy building strategy, indoor environmental quality,
and green building assessment. Critical factors to achieve
green building have been categorized into technical, man-
agerial and behavioral aspects (Zuo & Zhao, 2014). A
comprehensive review of existing computational methods

for sustainable building design is conducted in Evins (2013),
which include envelope design, configuration and control of
building systems, and renewable energy generation. The key
difference of these methods with the present study is that
the optimization variables are limited to traditional build-
ing components, such as windows, shading, HVAC and
lighting mechanical systems, water supply, and distributed
energy resources, which do not take into account infras-
tructures/components (e.g., sensors, networked actuators,
computational units, wireless networks, advanced analytics
and control algorithms etc.) required to enable intelligent
services (e.g., indoor positioning, demand-based ventilation,
human-building interactions, etc.). A conceptual framework
of smart building design automation has been proposed in
Jia et al. (2018), where a platform-based design approach
has been investigated. This work provides an algorithmic
framework and solution to the problem similar to Jia et al.
(2018).

3. Methods

3.1. Optimization Framework

The optimization problem is formulated as a Mixed-Integer
Program (MIP). The intelligent system design and retrofit
is naturally a multi-objective optimization, which involves
cost, energy efficiency, privacy, comfort and security; how-
ever, except for cost and energy efficiency, there is no clear
way to compare other factors on the same scale (i.e., dollars).
Thus, we set a simple goal to reduce cost, which essentially
includes the amount of energy saved while satisfying the
constraints of other factors set by the users. The procedure
in BISCUIT is illustrated in Fig 1 and also described below:

1. User specifications, which includes (1) building meta
information: building areas, occupancy levels, usage,
and weather; (2) functional requirements: privacy, com-
fort, and security; and (3) specifications for compo-
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Table 1. Description of Libraries available in BISCUIT

nents such as HVAC, lighting and sensors.

2. Simulation of building occupancy profiles and energy
consumptions based on user-provided information and
supported control strategies

3. Recommendations of optimal investment plan by solv-
ing the corresponding MIP

For the optimization problem, the objective function is given
by the sum of the investment cost and the annual operation
cost (i.e., electricity and thermal energy cost), and the an-
nual maintenance cost (i.e., personnel employed to maintain
HVAC, lighting). Because the infrastructure can have var-
ious life spans, we use the capital recovery factor (CRF)
to convert the present value to annual payment. The con-
straints of the optimization problem can be grouped into the
following categories:

1. User specification constraints take into account user
preferences. For instance, if the user requires a high-
level of privacy, then some sensors such as camera
and sound might be excluded from selections. If the
userexpresses the need for security or human building
interaction, then the corresponding infrastructures and
software should exist in the optimized plan

2. Device compatibility and sharing constraints ensure
that the selected components are interoperable accord-
ing to vendors’ standards (e.g., whether the intelligent
HVAC control box is BACnet compatible), and also in-
dicate which components can be shared among the sub-
systems (e.g., a sensor that can measure environmental
parameters can be used for occupancy detection, and
thus, can be shared by intelligent HVAC and lighting
systems; however, a camera can be used for occupancy
detection for HVAC control, but not lighting control
because it might not operate in the darkness).

3. Functional constraints are imposed for proper opera-
tion of intelligent services, which can be categorized
into (1) sensor instrumentation: intelligent building
services require contextual awareness (e.g., indoor po-
sitioning, occupancy detection, activity recognition,

thermal comfort, etc.), enabled by sensors which can
measure a variety of environmental parameters; (2) con-
trol algorithms: advanced building operation strategies
such as model-predictive control (MPC) require both
real-time sensing, computation and actuation capabili-
ties supported by respective infrastructures (i.e., sensor,
server, and intelligent HVAC/lighting); and (3) infras-
tructure: this captures the interdependent operation of
subsystems; for example, the operation of intelligent
HVAC, depends on the availability of computational
unit and building operating systems, so they need to be
all present to enable cooperative services.

From an machine learning and optimization perspective, the
variables to be optimized include both continuous variables,
such as hourly HVAC energy consumption and maintenance
costs, and predominantly, binary variables (i.e., 0 or 1 value),
such as the decision to install equipment and employ certain
control algorithms (e.g., MPC, reactive or rule-based control
(Dounis & Caraiscos, 2009)).

3.2. Building Libraries

To facilitate optimal decision making, libraries of available
equipment/components can be specified by the user. These
libraries include high-level information about pricing, life
span, rate powers, efficiency, maintenance cost, compatibil-
ity and functional requirements. A short description of each
library is summarized in Table 1. While the default libraries
have information about common off-the-shelf components,
this organization is intended to facilitate users to specify
their preferred brands, and the vendors to contribute their
available products.

3.3. Building occupancy simulation and control
strategies

Building occupancy profile is critical to evaluate energy con-
sumptions (Feng et al., 2015). We use an occupancy dataset
collected from real-world buildings and then simulate oc-
cupancy measurements for different types of occupancy
sensors. For instance, PIR sensor measurements are simu-
lated by binarizing the actual occupancy data; further, we
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Figure 2. Tllustration of Building Retrofit Choice and Cost Saving achieved via BISCUIT

flip the binary occupancy state with fixed probability at each
time step in order to mimic sensor noise. Occupancy counter
measurements are simulated by adding Gaussian noise to the
actual measurements. The generated occupancy profiles are
then used to simulate energy consumptions of HVAC (Kel-
man & Borrelli, 2011) and lighting, using both traditional
PID-based setpoint control (Goyal et al., 2013) and intelli-
gent methods such as occupancy-responsive setpoint control
(Goyal et al., 2013) and MPC (Kelman & Borrelli, 2011).
The control performance depends on both the efficiency of
the system, and the precision of the sensors in the case of
occupancy-driven control; thus, we associate each combi-
nation with a corresponding simulation trace. Furthermore,
requirements such as comfort level and energy efficiency are
incorporated in the simulation by adjusting corresponding
control parameters based on occupancy profiles, which is
equivalent to constraining the set of appropriate building
operation modes.

4. Case Study

In this case study, we examine the retrofit of a medium-sized
building (40 rooms, 100 occupants) in California, USA.
Based on RSMeans cost manual (RS, 2018) and market
prices, we provide an estimate of costs for the components.
The available HVAC and lighting system candidates (both
traditional and intelligent), in tandem with building meta
data, are evaluated for annual consumptions. The user fur-
ther specifies a high level of privacy requirements. The data
was fed to the BISCUIT software and the optimal choice
was found to be HVAC Intelligent Retrofit and Light In-
telligent Retrofit. Controller for both HVAC and Lighting
was selected to be a High Precision React Controller. Fig
2(a) and Fig 2(b) show the distribution of installation cost
and operation cost respectively for baseline choice (Tradi-
tional HVAC retrofit + Traditional Lighting retrofit) and
the optimal choice (Intelligent HVAC retrofit + Intelligent
Lighting retrofit). Fig 2(c) shows the distribution of total
costs for all retrofit choices. As apparent from Fig 2(c),
the optimal choice has the lowest total cost. Another ob-
servation to note in Fig 2 is that, though the installation

cost for optimal choice is more than the baseline choice, the
difference between them can be recovered in approximately
3-4 years with the difference in operation cost which is less
for optimal case than the baseline case.

5. Conclusion

To fulfill the potential of smart buildings, intelligent ser-
vices such as indoor positioning, occupancy detection, and
demand-based ventilation need to gain wider access to the
public. A critical step is to equip buildings with the infras-
tructure to support these services, from sensing, actuation
to control and learning. This work comprises of a key step
towards this goal by focusing on the task of building design
retrofit, with the aim of providing a cost-saving toolset to
facilitate the selection of sensors, retrofit components and
control algorithms. This toolset is able to further facilitate
cost saving analysis, energy efficiency evaluation and early
technology adoption. An extended version of this paper can
be found at Jin et al. (2018).
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