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Abstract

Carbon capture and storage (CCS) offers a promising means
for significant reductions in greenhouse gas emissions and
climate change mitigation at a large scale. Modeling CO,
transport and pressure buildup is central to understanding the
responses of geosystems after CO, injection and assessing the
suitability and safety of CO, storage. However, numerical
simulations of geological CO, storage often suffer from its
multi-physics nature and complex non-linear governing
equations, and is further complicated by flexible injection de-
signs including changes in injection rates, resulting in formi-
dable computational costs. New ideas have emerged such as
data-driven models to tackle such challenges but very few
have been fully developed and deployed as reliable tools.
With the joint efforts of industry and universities, we are cur-
rently working on a new mechanism of fostering cross-disci-
plinary collaboration, developing, deploying, and scaling
data-driven tools for CCS. A deep learning suite that can act
as an alternative to CCS variable rate injection simulation
will be the first tool developed under this mechanism. Based
on the surrogate model, optimal design of injection strategy
under pressure buildup constraints will be enabled with ma-
chine learning.

Introduction

Geological storage of CO: in saline aquifers, depleted oil
and gas fields or unmineable coal seams, represents one of
the most important processes for reducing anthropogenic
emissions of greenhouse gases. The IEA's Sustainable De-
velopment Scenario proposes that over 90% of COz cap-
tured from various sectors and sources should be destined
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for geological storage through to 2070 (IEA, 2020). CO:
storage in deep saline aquifers, in particular, is a vital option
with an estimated capacity of ~ 10°-10* Gt globally (IPCC,
2005).

Successful CO: storage projects are necessitated by accu-
rate prediction of geo-sequestration processes of CO2 with
regard to specific reservoir conditions and injection config-
urations. Numerical simulation is the primary tool used for
predicting the flow transport of CO2 by solving conservation
equations. In such practices, the prediction of CO; transport
is governed by highly non-linear partial differential equa-
tions (PDEs) and requires fine spatial and temporal discreti-
zation for accurate depiction of flow processes. Thus, large-
scale numerical simulation is computationally expensive,
inefficient and even infeasible for some CCS storage opti-
mization problems.

Machine learning has recently shown a growing potential
for applications to CCS problems as a substitute of conven-
tional numerical simulation, with comparable fidelity as nu-
merical simulations in some simple tasks, but at a much
faster speed. For example, a rough set-based machine learn-
ing (RSML) technique was used to test the storage integrity
of geological reservoirs (Aviso et al. 2019). We could also
apply support vector machine (SVM) and random forest (RF)
algorithms to predict CO: trapping efficiencies in saline for-
mations (Thanh and Lee 2021). In more complicated cases,
typical outputs (for example, CO:2 saturation distributions
and pressure responses) from numerical simulators can be
directly modeled by machine learning and deep learning



methods. By means of Bayesian learning and principle com-
ponent analysis (PCA), the spatial distribution of CO2 con-
centration and pressure at the top of the reservoir can be
forecast accurately (Lu et al. 2022). Furthermore, CCSNet
developed by Wen et al. (2021) used a temporal 3D CNN
model architecture that can predict the dynamic changes of
CO: storage process in deep saline aquifers for single well
injection scenarios with constant injection rates. Later, a
Fourier neural operator-based deep-learning model (U-FNO)
was proposed to extend state-of-art CNN models to address
the effect of reservoir anisotropy on CO: storage under sim-
plified COz injection configurations, i.e., single well and
constant rates (Wen et al. 2022). Such advances greatly im-
proved the efficiency of dealing with multiphase transport
problems associated with CO: storage, representing several
of the successful trials at intersection of CCS and machine
learning.

In industrial-scale carbon sequestration operations, injec-
tion designs (e.g., injection rate, injection scenario, well
configuration, perforation interval) play a central role in de-
termining COz storage capacity, risks and liabilities, and ul-
timately the environmental and economic benefits of a pro-
ject (Al-Khdheeawi et al., 2018). For example, the excessive
pressure buildup from defective injection design such as a
large and persisting injection rate may result in CO2 leakage
and environmental contamination with increasing “failure”
risks of caprock fracturing, leakage up abandoned wells, and
induced seismicity (Buscheck et al., 2012). Therefore, dy-
namical CO: injection strategy characterized by variable in-
jections rates is the norm, and pressure buildup as a limiting
factor for safe trapping of CO2 must be considered. However,
to date, surrogate models have not been designed and trained
for dynamic COz injection scenarios.

We seek to develop a deep-learning based toolkit that
achieves rapid and accurate prediction of CO2 plume migra-
tion processes under dynamic CO: injection schemes, as
well as optimization of COz injection strategy with regard to
CO: storage capacity and security. To this end, we have in-
tegrated theoretical and computing resources from cloud
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technology providers and universities, adopted deep learn-
ing and machine learning methods, and proposed a light-
weight surrogate model construction method based on math-
ematical empirical formula. This work is a pioneering at-
tempt of interdisciplinary and industry-university collabora-
tion. It is expected to appeal to both academia and industry,
and a broad audience with interests in how to bring new
ideas to deployment on tackling climate change with artifi-
cial intelligence.

Research Plan

Our research plan will be divided into four phases: data gen-
eration, surrogate model construction, machine learning-
based optimization model research, and model deployment
(Figure 1).

Phase 1: Data Generation

As a data-driven study, we first need to obtain data which
describe the storage process of CO: in saline aquifers for
subsequent model training and validation. A specific carbon
storage scenario consists of several categories of parameters,
including geological conditions, CO: injection conditions,
etc. We will use numerical simulation methods to generate
geological evolution data for a range of specific saline car-
bon storage scenarios. Specifically, we will consider the fol-
lowing categories of variable parameters to ensure a diver-
sity of carbon sequestration scenarios:
» Reservoir conditions: basic information about geological
formations, including initial pressure, temperature, reser-
voir thickness, etc.;

* Geological model: spatial distribution of permeability
distribution in the reservoir;

* Rock properties: rock properties that affect carbon diox-
ide migration in the formation, including capillary pres-
sure curves, relative permeability curves, etc.;

* CO2 injection design: perforation position, perforation
thickness, variable CO: injection rates, etc.;
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Figure 1: Research plan for surrogate and optimization model construction for COz storage process in deep saline formations



We will sample the parameters above within a reasonable
range and generate a series of diverse carbon storage scenar-
ios in saline aquifers. It should be emphasized that the CO:
injection rate under each scenario will vary over time, since
our goal is to develop a surrogate prediction model for vari-
able COz injection rate conditions. At the same time, the set-
ting of time steps will be non-uniform in order to take both
transient and steady-state responses of geological evolution
into account.

We will use a widely adopted numerical simulator to gen-
erate data of CO2 migration and geological evolution within
30 years for each scenario. We plan to generate data of more
than 10,000 scenarios through numerical simulation, and
use these data as the training dataset for this study. As of the
submission of this paper, Phase 1 is currently underway.

Phase 2: Surrogate Model Construction

Based on the data generated in the first phase, we will use
data-driven methods to build surrogate models, which ena-
ble rapid and accurate prediction of COz saline aquifer stor-
age processes under specific scenarios.

Deep learning is the main approach we will take. We will
convert the parameter inputs such as the initial pressure field
and permeability map into matrices that can be recognized
and understood by the deep learning framework. The results
of the storage evolution processes can also be converted to
matrix form. After that, a convolutional neural network-
based prediction model can be constructed. Using our da-
taset, we will explore the performance of different deep
learning models for dynamic CO: injection rate scenarios.
In this process, some existing deep learning models with
similar scope to this paper will also provide important inspi-
ration for model construction.

In the process of building a deep learning model, based
on the idea of multidisciplinary integration, the combination
of network structure building and geological mechanism in-
terpretation will also be the focus of our study. We will con-
sider the thermodynamic and geological models involved in
the carbon storage scenarios, and explore the possibility of
utilizing prior knowledge. Great efforts will be made to im-
prove the accuracy and interpretability of the model.

While deep learning models, if trained appropriately, are
capable of predictions of a collection of variables related to
CO: transport and distribution, physics-based surrogate
models can be constructed for calculations of specific vari-
ables of interest at lower model training costs. For example,
we have demonstrated the feasibility of applying the Du-
hamel's principle (Duhamel, 1833) from the well testing of
oil production to solve the bottom hole pressure response of
variable COz injection rates with constant rate data (Figure
2). According to Duhamel’s principle, when we know the
constant-rate pressure responses, the bottom hole pressure
response is given in discrete form as:
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Figure 2: Application of the Duhamel’s principle to solve the
bottom hole pressure response of variable CO: injection
rates with constant rate data. (a) A single case demonstration;
(b) Parity plot showing the predictive capability of the phys-
ics-based method versus commercial simulator.
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where Ap(t) is the pressure response at time t , g; is the i-
th injection rate in variable CO: injection rate series, and
p,.(t) is the constant-rate pressure response per unit injec-
tion rate at time ¢t.

We tested the accuracy of calculations using Duhamel's
principle under a series of carbon sequestration scenarios
with different parameters. A total of 20 CO: injection sce-
narios were randomly generated with 10 injection rate
changes over a 30-yr period. Predictions of time-series bot-
tom hole pressure buildup based on Duhamel's principle us-
ing constant rate data aligned well with those by numerical
simulations of variable injection schemes (Figure 2a). Parity
plot showing the predictions based on Duhamel's principle
versus the corresponding simulated results for each case at
each time point provides a more complete picture of the pre-
dictive capabilities of the physics-based method (Figure 2b).



Duhamel's principle predicts the bottom hole pressure re-
sponse exceedingly well (R?=0.987, P <0.001), suggesting
that simple and lightweight surrogate models, though
weaker in applicability compared with deep learning models,
are also worth considering in the face of some specific prob-
lems.

Phase 3: Optimization Model Construction

The third phase will be to build an optimization model based
on machine learning to find the optimal strategy for CO: in-
jection under specific objectives and constraints. Currently,
we hope to solve the optimal time series for CO2 injection
with the objective of maximizing the total amount of carbon
storage within 30 years. The pressure at the injection well
perforation and some other key locations will be constrained.
The optimization objectives and constraints above can also
be further adjusted according to other practical considera-
tions. The surrogate model obtained in the second phase is
expected to greatly improve the prediction efficiency and
lay an indispensable foundation for the optimization work in
this phase.

Since the CO: injection rate is a continuous variable, and
its time series has infinite choices, we will discretize the
value of injection rate and time. Subsequently, we will use
machine learning methods to solve the optimization prob-
lem which might not be solved otherwise due to the large
decision space. In this model, different COz injection rates
will be regarded as different behaviors of the “agent”. We
will formulate appropriate reward functions based on the to-
tal mass of injected COz and local pressure buildup to help
the model find the optimal action strategy in different sce-
narios.

In this process, we will explore machine learning methods
such as reinforcement learning, genetic algorithm, particle
swarm optimization, deep learning and other methods to im-
prove the performance of the agent. As a consequence, we
hope that the agent can efficiently and accurately find the
optimal strategy under different carbon storage scenarios,
that is, the optimal COz storage solution that satisfies vari-
ous constraints.

Through the above three phases of work, we will finally
get an efficient solution to the problem of carbon storage
evolution prediction and optimization, driven by artificial
intelligence methods. Then we will be able to integrate all
the results into a suite. The suite is expected to rapidly pre-
dict the geological evolution and CO2 migration process un-
der specific COz saline aquifer storage scenario, within a
few seconds at most. Furthermore, it can find the optimal
solution of COz injection rate time series for specific opti-
mization objectives and constraints quickly, ensuring both
efficiency and safety of the storage process.

Phase 4: Model Deployment

The final phase will be model deployment with cloud tech-
nology. We will deploy our surrogate model and optimiza-
tion model using NVIDIA Triton inference server
(https://developer.nvidia.com/nvidia-triton-inference-
server). Triton is an open-source inference-serving software
for deploying Al in applications. It can satisfy diverse appli-
cation requirements and be compatible with AI models im-
plemented in different ways. Using RAPIDS (https://devel-
oper.nvidia.com/rapids) as the inference backend, Triton's
model analyzer intelligently determines the optimal model
configuration, and combines concurrent execution and dy-
namic batching capabilities to improve inference efficiency.
The model we deploy will provide users with flexible, scal-
able, and easy-to-access CCS guidance services powered by
cloud technologies. Users will be able to customize input
variable combinations, including geological attributes and
injection configurations. Model outputs such as pressure
buildup and gas saturation maps at fine spatial-temporal res-
olution will be provided within seconds. In the optimization
service, critical thresholds for safe COz trapping (e.g., max-
imum pressure buildup and maximum injection rates) can be
customized. The optimization model will enable the search
for a “best” combination of CO: injection rates at different
time points that ensures the largest amount of COz storage
over the project cycle, while taking into account safety re-
quirements specified by users. As such, the deployed models
will be able to largely facilitate site selection and injection
design of real-world CCS projects.

Future work

In the short run, we will focus on expanding the capabilities
of the dynamic COz storage surrogate model and exploring
the optimal design of injection schemes under diverse con-
straints in engineering applications. Specifically, injection
design optimization will take into account new constraints,
such as reservoir pressure associated with fault activa-
tion. Future work will also be to extend the surrogate model
approach that integrates mathematical models with machine
learning to more CCS processes that rely on traditional nu-
merical simulations. In the long-run, efforts will be directed
toward the development of the mechanism that empowers
the designing and scaling of data-driven tools for CCS by
cross-disciplinary, industry-university collaboration.
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