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Abstract  
Carbon capture and storage (CCS) offers a promising means 
for significant reductions in greenhouse gas emissions and 
climate change mitigation at a large scale. Modeling CO2 
transport and pressure buildup is central to understanding the 
responses of geosystems after CO2 injection and assessing the 
suitability and safety of CO2 storage. However, numerical 
simulations of geological CO2 storage often suffer from its 
multi-physics nature and complex non-linear governing 
equations, and is further complicated by flexible injection de-
signs including changes in injection rates, resulting in formi-
dable computational costs. New ideas have emerged such as 
data-driven models to tackle such challenges but very few 
have been fully developed and deployed as reliable tools. 
With the joint efforts of industry and universities, we are cur-
rently working on a new mechanism of fostering cross-disci-
plinary collaboration, developing, deploying, and scaling 
data-driven tools for CCS. A deep learning suite that can act 
as an alternative to CCS variable rate injection simulation 
will be the first tool developed under this mechanism. Based 
on the surrogate model, optimal design of injection strategy 
under pressure buildup constraints will be enabled with ma-
chine learning. 

Introduction   
Geological storage of CO2 in saline aquifers, depleted oil 
and gas fields or unmineable coal seams, represents one of 
the most important processes for reducing anthropogenic 
emissions of greenhouse gases. The IEA's Sustainable De-
velopment Scenario proposes that over 90% of CO2 cap-
tured from various sectors and sources should be destined 
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for geological storage through to 2070 (IEA, 2020). CO2 
storage in deep saline aquifers, in particular, is a vital option 
with an estimated capacity of ~ 103-104 Gt globally (IPCC, 
2005).  
 Successful CO2 storage projects are necessitated by accu-
rate prediction of geo-sequestration processes of CO2 with 
regard to specific reservoir conditions and injection config-
urations. Numerical simulation is the primary tool used for 
predicting the flow transport of CO2 by solving conservation 
equations. In such practices, the prediction of CO2 transport 
is governed by highly non-linear partial differential equa-
tions (PDEs) and requires fine spatial and temporal discreti-
zation for accurate depiction of flow processes. Thus, large-
scale numerical simulation is computationally expensive, 
inefficient and even infeasible for some CCS storage opti-
mization problems. 
 Machine learning has recently shown a growing potential 
for applications to CCS problems as a substitute of conven-
tional numerical simulation, with comparable fidelity as nu-
merical simulations in some simple tasks, but at a much 
faster speed. For example, a rough set-based machine learn-
ing (RSML) technique was used to test the storage integrity 
of geological reservoirs (Aviso et al. 2019). We could also 
apply support vector machine (SVM) and random forest (RF) 
algorithms to predict CO2 trapping efficiencies in saline for-
mations (Thanh and Lee 2021). In more complicated cases, 
typical outputs (for example, CO2 saturation distributions 
and pressure responses) from numerical simulators can be 
directly modeled by machine learning and deep learning 

 



methods. By means of Bayesian learning and principle com-
ponent analysis (PCA), the spatial distribution of CO2 con-
centration and pressure at the top of the reservoir can be 
forecast accurately (Lu et al. 2022). Furthermore, CCSNet 
developed by Wen et al. (2021) used a temporal 3D CNN 
model architecture that can predict the dynamic changes of 
CO2 storage process in deep saline aquifers for single well 
injection scenarios with constant injection rates. Later, a 
Fourier neural operator-based deep-learning model (U-FNO) 
was proposed to extend state-of-art CNN models to address 
the effect of reservoir anisotropy on CO2 storage under sim-
plified CO2 injection configurations, i.e., single well and 
constant rates (Wen et al. 2022). Such advances greatly im-
proved the efficiency of dealing with multiphase transport 
problems associated with CO2 storage, representing several 
of the successful trials at intersection of CCS and machine 
learning.  
 In industrial-scale carbon sequestration operations, injec-
tion designs (e.g., injection rate, injection scenario, well 
configuration, perforation interval) play a central role in de-
termining CO2 storage capacity, risks and liabilities, and ul-
timately the environmental and economic benefits of a pro-
ject (Al-Khdheeawi et al., 2018). For example, the excessive 
pressure buildup from defective injection design such as a 
large and persisting injection rate may result in CO2 leakage 
and environmental contamination with increasing “failure” 
risks of caprock fracturing, leakage up abandoned wells, and 
induced seismicity (Buscheck et al., 2012). Therefore, dy-
namical CO2 injection strategy characterized by variable in-
jections rates is the norm, and pressure buildup as a limiting 
factor for safe trapping of CO2 must be considered. However, 
to date, surrogate models have not been designed and trained 
for dynamic CO2 injection scenarios. 
 We seek to develop a deep-learning based toolkit that 
achieves rapid and accurate prediction of CO2 plume migra-
tion processes under dynamic CO2 injection schemes, as 
well as optimization of CO2 injection strategy with regard to 
CO2 storage capacity and security. To this end, we have in-
tegrated theoretical and computing resources from cloud 

technology providers and universities, adopted deep learn-
ing and machine learning methods, and proposed a light-
weight surrogate model construction method based on math-
ematical empirical formula. This work is a pioneering at-
tempt of interdisciplinary and industry-university collabora-
tion. It is expected to appeal to both academia and industry, 
and a broad audience with interests in how to bring new 
ideas to deployment on tackling climate change with artifi-
cial intelligence. 

Research Plan 
Our research plan will be divided into four phases: data gen-
eration, surrogate model construction, machine learning-
based optimization model research, and model deployment 
(Figure 1). 

Phase 1: Data Generation 
As a data-driven study, we first need to obtain data which 
describe the storage process of CO2 in saline aquifers for 
subsequent model training and validation. A specific carbon 
storage scenario consists of several categories of parameters, 
including geological conditions, CO2 injection conditions, 
etc. We will use numerical simulation methods to generate 
geological evolution data for a range of specific saline car-
bon storage scenarios. Specifically, we will consider the fol-
lowing categories of variable parameters to ensure a diver-
sity of carbon sequestration scenarios: 
• Reservoir conditions: basic information about geological 

formations, including initial pressure, temperature, reser-
voir thickness, etc.; 

• Geological model: spatial distribution of permeability 
distribution in the reservoir; 

• Rock properties: rock properties that affect carbon diox-
ide migration in the formation, including capillary pres-
sure curves, relative permeability curves, etc.; 

• CO2 injection design: perforation position, perforation 
thickness, variable CO2 injection rates, etc.; 

 

Figure 1: Research plan for surrogate and optimization model construction for CO2 storage process in deep saline formations
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We will sample the parameters above within a reasonable 
range and generate a series of diverse carbon storage scenar-
ios in saline aquifers. It should be emphasized that the CO2 
injection rate under each scenario will vary over time, since 
our goal is to develop a surrogate prediction model for vari-
able CO2 injection rate conditions. At the same time, the set-
ting of time steps will be non-uniform in order to take both 
transient and steady-state responses of geological evolution 
into account. 

We will use a widely adopted numerical simulator to gen-
erate data of CO2 migration and geological evolution within 
30 years for each scenario. We plan to generate data of more 
than 10,000 scenarios through numerical simulation, and 
use these data as the training dataset for this study. As of the 
submission of this paper, Phase 1 is currently underway. 

Phase 2: Surrogate Model Construction 
Based on the data generated in the first phase, we will use 
data-driven methods to build surrogate models, which ena-
ble rapid and accurate prediction of CO2 saline aquifer stor-
age processes under specific scenarios. 
 Deep learning is the main approach we will take. We will 
convert the parameter inputs such as the initial pressure field 
and permeability map into matrices that can be recognized 
and understood by the deep learning framework. The results 
of the storage evolution processes can also be converted to 
matrix form. After that, a convolutional neural network-
based prediction model can be constructed. Using our da-
taset, we will explore the performance of different deep 
learning models for dynamic CO2 injection rate scenarios. 
In this process, some existing deep learning models with 
similar scope to this paper will also provide important inspi-
ration for model construction. 

In the process of building a deep learning model, based 
on the idea of multidisciplinary integration, the combination 
of network structure building and geological mechanism in-
terpretation will also be the focus of our study. We will con-
sider the thermodynamic and geological models involved in 
the carbon storage scenarios, and explore the possibility of 
utilizing prior knowledge. Great efforts will be made to im-
prove the accuracy and interpretability of the model. 

While deep learning models, if trained appropriately, are 
capable of predictions of a collection of variables related to 
CO2 transport and distribution, physics-based surrogate 
models can be constructed for calculations of specific vari-
ables of interest at lower model training costs. For example, 
we have demonstrated the feasibility of applying the Du-
hamel's principle (Duhamel, 1833) from the well testing of 
oil production to solve the bottom hole pressure response of 
variable CO2 injection rates with constant rate data (Figure 
2). According to Duhamel’s principle, when we know the 
constant-rate pressure responses, the bottom hole pressure 
response is given in discrete form as: 

 

Figure 2: Application of the Duhamel’s principle to solve the 
bottom hole pressure response of variable CO2 injection 
rates with constant rate data. (a) A single case demonstration; 
(b) Parity plot showing the predictive capability of the phys-
ics-based method versus commercial simulator. 

 

Δ𝑝(𝑡) =& (𝑞! − 𝑞!"#))𝑝$(𝑡 − 𝑡!"#)*
%

!&#
(1) 

where Δ𝑝(𝑡) is the pressure response at time 𝑡 , 𝑞! is the 𝑖-
th injection rate in variable CO2 injection rate series, and 
𝑝$(𝑡) is the constant-rate pressure response per unit injec-
tion rate at time 𝑡.  

We tested the accuracy of calculations using Duhamel's 
principle under a series of carbon sequestration scenarios 
with different parameters. A total of 20 CO2 injection sce-
narios were randomly generated with 10 injection rate 
changes over a 30-yr period. Predictions of time-series bot-
tom hole pressure buildup based on Duhamel's principle us-
ing constant rate data aligned well with those by numerical 
simulations of variable injection schemes (Figure 2a). Parity 
plot showing the predictions based on Duhamel's principle 
versus the corresponding simulated results for each case at 
each time point provides a more complete picture of the pre-
dictive capabilities of the physics-based method (Figure 2b). 
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Duhamel's principle predicts the bottom hole pressure re-
sponse exceedingly well (R2 = 0.987, P < 0.001), suggesting 
that simple and lightweight surrogate models, though 
weaker in applicability compared with deep learning models, 
are also worth considering in the face of some specific prob-
lems. 

Phase 3: Optimization Model Construction 
The third phase will be to build an optimization model based 
on machine learning to find the optimal strategy for CO2 in-
jection under specific objectives and constraints. Currently, 
we hope to solve the optimal time series for CO2 injection 
with the objective of maximizing the total amount of carbon 
storage within 30 years. The pressure at the injection well 
perforation and some other key locations will be constrained. 
The optimization objectives and constraints above can also 
be further adjusted according to other practical considera-
tions. The surrogate model obtained in the second phase is 
expected to greatly improve the prediction efficiency and 
lay an indispensable foundation for the optimization work in 
this phase. 

Since the CO2 injection rate is a continuous variable, and 
its time series has infinite choices, we will discretize the 
value of injection rate and time. Subsequently, we will use 
machine learning methods to solve the optimization prob-
lem which might not be solved otherwise due to the large 
decision space. In this model, different CO2 injection rates 
will be regarded as different behaviors of the “agent”. We 
will formulate appropriate reward functions based on the to-
tal mass of injected CO2 and local pressure buildup to help 
the model find the optimal action strategy in different sce-
narios. 

In this process, we will explore machine learning methods 
such as reinforcement learning, genetic algorithm, particle 
swarm optimization, deep learning and other methods to im-
prove the performance of the agent. As a consequence, we 
hope that the agent can efficiently and accurately find the 
optimal strategy under different carbon storage scenarios, 
that is, the optimal CO2 storage solution that satisfies vari-
ous constraints. 

Through the above three phases of work, we will finally 
get an efficient solution to the problem of carbon storage 
evolution prediction and optimization, driven by artificial 
intelligence methods. Then we will be able to integrate all 
the results into a suite. The suite is expected to rapidly pre-
dict the geological evolution and CO2 migration process un-
der specific CO2 saline aquifer storage scenario, within a 
few seconds at most. Furthermore, it can find the optimal 
solution of CO2 injection rate time series for specific opti-
mization objectives and constraints quickly, ensuring both 
efficiency and safety of the storage process.  

 

Phase 4: Model Deployment 
The final phase will be model deployment with cloud tech-
nology. We will deploy our surrogate model and optimiza-
tion model using NVIDIA Triton inference server 
(https://developer.nvidia.com/nvidia-triton-inference-
server). Triton is an open-source inference-serving software 
for deploying AI in applications. It can satisfy diverse appli-
cation requirements and be compatible with AI models im-
plemented in different ways. Using RAPIDS (https://devel-
oper.nvidia.com/rapids) as the inference backend, Triton's 
model analyzer intelligently determines the optimal model 
configuration, and combines concurrent execution and dy-
namic batching capabilities to improve inference efficiency. 
The model we deploy will provide users with flexible, scal-
able, and easy-to-access CCS guidance services powered by 
cloud technologies. Users will be able to customize input 
variable combinations, including geological attributes and 
injection configurations. Model outputs such as pressure 
buildup and gas saturation maps at fine spatial-temporal res-
olution will be provided within seconds. In the optimization 
service, critical thresholds for safe CO2 trapping (e.g., max-
imum pressure buildup and maximum injection rates) can be 
customized. The optimization model will enable the search 
for a “best” combination of CO2 injection rates at different 
time points that ensures the largest amount of CO2 storage 
over the project cycle, while taking into account safety re-
quirements specified by users. As such, the deployed models 
will be able to largely facilitate site selection and injection 
design of real-world CCS projects. 

Future work 
In the short run, we will focus on expanding the capabilities 
of the dynamic CO2 storage surrogate model and exploring 
the optimal design of injection schemes under diverse con-
straints in engineering applications. Specifically, injection 
design optimization will take into account new constraints, 
such as reservoir pressure associated with fault activa-
tion. Future work will also be to extend the surrogate model 
approach that integrates mathematical models with machine 
learning to more CCS processes that rely on traditional nu-
merical simulations. In the long-run, efforts will be directed 
toward the development of the mechanism that empowers 
the designing and scaling of data-driven tools for CCS by 
cross-disciplinary, industry-university collaboration. 
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