Wildfire Forecasting with Satellite Images and Deep Generative Model
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Abstract

Wildfire prediction has been one of the most critical tasks that
humanities want to thrive at. While it plays a vital role in pro-
tecting human life, it is also difficult because of its stochastic
and chaotic properties. We tackled the problem by interpret-
ing a series of wildfire images into a video and used it to
anticipate how the fire would behave in the future. However,
creating video prediction models that account for the inher-
ent uncertainty of the future is challenging. The bulk of pub-
lished attempts are based on stochastic image-autoregressive
recurrent networks, which raise various performance and ap-
plication difficulties such as computational cost and limited
efficiency on massive datasets. Another possibility is to use
entirely latent temporal models that combine frame synthesis
with temporal dynamics. However, due to design and training
issues, no such model for stochastic video prediction has yet
been proposed in the literature. This paper addresses these is-
sues by introducing a novel stochastic temporal model whose
dynamics are driven in a latent space. It naturally predicts
video dynamics by allowing our lighter, more interpretable la-
tent model to beat previous state-of-the-art approaches on the
GOES-16 dataset. Results are compared using various bench-
marking models.

Introduction

Weather forecasting has been an essential task of hu-
mankind. Since 1975, the US Government has utilized the
Geostationary Operational Environmental Satellite (GOES)
to produce data that can enhance weather and climate mod-
els, thus allowing for more precise and quicker weather
forecasting and a better knowledge of long-term climate
conditions (NASA 2015; Dunbar and Garner 2021). Using
informative GOES data can help with wildfire prediction
and detection, as current data has shown, more and more
wildfires are happening. The increase in severity, frequency,
and duration of wildfires brought on by anthropogenic cli-
mate change and rising global temperatures has resulted in
the emission of significant amounts of greenhouse gases,
the destruction of forests and their related habitats, as well
as damage to infrastructure and property (Marlon et al.
2012; Abatzoglou and Williams 2016; Vila-Vilardell et al.
2020).
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Even though previous projects on fire detection have been
done, most of them attempted to tackle segmentation
(Khyrashchev and Larionov 2020; Pereira et al. 2021; Zhang
et al. 2021). Although these methods may not serve the
whole idea of wildfire prediction and prevention, they tend
to recognize the fire once it has happened, and the larger it
grows, the easier they can segment. Additionally, they have
only tried to use traditional rasterized satellite images in
which images are patched into traditional RGB 3-channel.
Therefore they could not capture very early predictors of
small wildfire.

An advantage of GOES compared to other satellites is that
GOES uses an Advanced Baseline Imager (ABI) that takes
the image of the Earth with 16 spectral bands (two visi-
ble channels, four near-infrared channels, and ten infrared
channels) with a fast scan time of 12 slices per hour and
a higher resolution of 0.5-2km (Schmit et al. 2017; NOAA
2017b). We can utilize the robustness of ABI images to cre-
ate a temporal-like dataset that serves as baseline data for
making predictions.

For the purpose of synthesizing images, generating adversar-
ial networks (GANS) can be taken into account. The network
introduces a generator and discriminator for unsupervised
adversarial training, which indirectly “learns” the dataset
through a minimax game (Goodfellow et al. 2014). The dis-
criminator distinguishes genuine pictures from a training set
from synthetic phony ones created by the generator. Starting
from this idea, we can evolve to generating video frames
instead of a single image. This idea can be classified as
stochastic video prediction. However, it is a daunting task as
most approaches are usually based on image-autoregressive
models (Babaeizadeh et al. 2017; Denton and Fergus 2018;
Weissenborn, Téackstrom, and Uszkoreit 2019), which were
pixel-wise tackles built around Recurrent Neural Networks
(RNNs) where each generated frame is fed back into the
model to produce the next frame. The performance of this
approach, however, relies heavily on the capability of its en-
coders and decoders, as each generated frame has to be re-
encoded in a latent space. Such techniques may have nega-
tive impact on performance and have limited application, es-
pecially when dealing with massive amounts of data (Gregor
et al. 2018; Rubanova, Chen, and Duvenaud 2019).



Another technique is to separate the dynamic of the state
representations from the produced frames, which are de-
coded separately from the latent space. This becomes
computationally interesting when combined with a low-
dimensional latent space and eliminating the relationship
mentioned above between frame generation and temporal
dynamics. Furthermore, such models are more interpretable
than autoregressive models and may be used to create a com-
plete representation of a system’s state, for example, in rein-
forcement learning applications (Gregor et al. 2018). These
State-Space Models (SSMs), however, are more challeng-
ing to train since they need non-trivial inference systems
(Krishnan, Shalit, and Sontag 2016) and careful dynamic
model construction (Karl et al. 2016). As a result, most ef-
fective SSMs are only assessed on minor or contrived toy
tasks.

In this paper, we present a novel stochastic dynamic model
for video prediction that successfully harnesses the struc-
tural and computational advantages of SSMs operating on
low-dimensional latent spaces. Its dynamic component gov-
erns the system’s temporal evolution through residual up-
dates of the latent state, which are conditioned on learned
stochastic variables. This approach enables us to execute
an efficient training strategy and analyze complex high-
dimensional data such as movies in an interpretable man-
ner. This residual principle is related to recent breakthroughs
in the relationship between residual networks and Ordi-
nary Differential Equations (ODEs). As illustrated in our
research, this interpretation offers additional possibilities,
such as creating videos at varied frame rates. As evi-
denced by comparisons with competing baselines on rele-
vant benchmarks, the proposed technique outperforms ex-
isting state-of-the-art models on the task of stochastic video
prediction.

Related Works

Video synthesis encompasses a wide range of tasks,
from super-resolution (Caballero et al. 2016), interpola-
tion between distant frames (Jiang et al. 2017), generation
(Tulyakov et al. 2017), video-to-video translation (Wang
et al. 2018), and conditioning video prediction, which is the
subject of this study.

Deterministic models

Beginning with RNN-based sequence generating models
(Graves 2013), a variety of video prediction algorithms
based on LSTMs (Long Short-Term Memory networks
(Hochreiter and Schmidhuber 1997)) and its convoluted
variation of ConvLSTMs (Shi et al. 2015) were developed
(Srivastava, Mansimov, and Salakhutdinov 2015; De Bra-
bandere et al. 2016; Wichers et al. 2018; Jin et al. 2020).
Computer vision algorithms are indeed frequently aimed
at high-dimensional video sequences and employ domain-
specific approaches such as pixel-level transformations, and
optical flow (Walker, Gupta, and Hebert 2015; Walker
et al. 2016; Vondrick and Torralba 2017; Lu, Hirsch, and
Scholkopf 2017; Fan, Zhu, and Yang 2019) to assist the
generation of high-quality predicting outputs. Such algo-

rithms are deterministic, limiting their efficacy by failing to
produce high-quality long-term video frames (Babaeizadeh
et al. 2017; Denton and Fergus 2018). Another approach is
to apply adversarial losses (Goodfellow et al. 2014) in sharp-
ening the resulting frames (Vondrick and Torralba 2017; Lu,
Hirsch, and Scholkopf 2017; Wu et al. 2020). Adversarial
losses, conversely, are famously challenging to train. As a
result, mode collapse develops, restricting generational di-
versity.

Stochastic and image-autoregressive models

Other methods manipulate pixel-level autoregressive gen-
eration and concentrate on precise probability maximiza-
tion (Oord et al. 2016; Kalchbrenner et al. 2016; Weis-
senborn, Téackstrom, and Uszkoreit 2020). Flow normal-
ization has also been studied using invertible transforma-
tions between the observation and latent spaces (Kingma
and Dhariwal 2018; Kumar et al. 2019). However, they ne-
cessitate the careful construction of sophisticated tempo-
ral production systems that manage high-dimensional data,
resulting in exorbitant temporal generation costs. For the
inference of low-dimensional latent state variables, Varia-
tional Auto-encoders are utilized in more efficient continu-
ous models (VAEs (Kingma and Welling 2013)). Stochastic
variables were integrated into ConvLSTM in (Babaeizadeh
et al. 2017). In order to sample random variables that are
supplied to a predictor LSTM, both (He et al. 2018) and
(Denton and Fergus 2018) utilized a prior LSTM condi-
tioned on previously produced frames. Finally, (Lee et al.
2018) merged the ConvLSTM with learned prior, sharpen-
ing the resulting videos with an adversarial loss. However,
all of these approaches are image-autoregressive in that they
feed their predictions back into the latent space, connect-
ing the frame synthesis and temporal models together and
increasing their computing cost. (Minderer et al. 2019) of-
fered an autoregressive VRNN model based on learned im-
age key points rather than raw frames, which is similar to
our approach. It is unknown to what degree this adjustment
will alleviate the issues mentioned above, instead, we ad-
dress these concerns by focusing on video dynamics and
proposing a state-space model that operates on a limited la-
tent space.

State-space model

Numerous latent state-space models, often trained using
deep variational inference, have been suggested for se-
quence modelization (Bayer and Osendorfer 2014; Fraccaro
et al. 2016; Hafner et al. 2018). These initiatives, which em-
ploy locally linear or RNN-based dynamics, are intended for
low-dimensional data since learning such models on com-
plex data is either difficult or it concentrates on control or
planning tasks. On the other hand, the utterly latent tech-
nique is the first to have been successfully applied to com-
plex high-dimensional data such as videos due to a tem-
poral model based on residual updates of its latent state.
It is part of a recent development that connects differen-
tial equations with neural networks (Lu et al. 2017; Long
et al. 2017), leading to the integration of ODEs, which are
seen as continuous residual networks (He et al. 2016). On



the other hand, follow-ups and similar research are confined
to low-dimensional data, prone to overfitting, and unable to
manage stochasticity within a sequence. Another line of re-
search examines stochastic differential equations using neu-
ral networks (Ryder et al. 2018; De Brouwer et al. 2019),
but is confined to continuous Brownian noise, whereas video
generation also involves the modeling of punctual stochastic
events.

Methods

We are concerned with the challenge of stochastic video pre-
diction, attempting to forecast future frames of a video given
the initial conditioning frames.

Latent Residual Dynamic Model

Let zg.r = {zo,x1,...,27—1} be a sequence of T video
frames, where each state z; € RP*™*™ ig a satellite im-
age, where b = 10 is the number of band (”channel”), and
m = 1500 and n = 2500 are the maximum image sizes. We
want to generate x7.74p, Where h is the forecasting hori-
zon. One way to achieve this goal is to use a parameter-
ized autoregressive model fy that maps one state to another:
Zi+1 = fo(x). We introduce latent variables y driven by
a dynamic temporal model to achieve this. Each frame z;
is then solely generated from the corresponding latent state
¢, making the dynamics independent from the previously
generated frames.

Based on (Franceschi et al. 2020), we suggest using a
stochastic residual network to describe the transition func-
tion of the latent dynamic of y. State y;4; is selected to
be deterministically dependent on the preceding state ¥
and conditionally dependent on an auxiliary random vari-
able z;11. These auxiliary variables represent the video dy-
namics’ unpredictability. They have a learned factorized
Gaussian prior that is solely affected by the initial state.
The model is depicted in Figure (1) and defined as fol-
lows:

Y1 NN(()?I)?
Zgp1 ~ N(ua(%% 00(yt)1)7

Vi1 = Y + fo(ye, 2e41),
z ~ G(go(ye))

ey

where 19, 09, fo, go are neural nets, and G(gg(y:)) is a prob-
ability distribution parameterized by gg(y;). Note that y; is
assumed to have a standard Gaussian prior and, in our VAE
setting, will be inferred from conditioning frames for the
prediction.

The residual update rule is based on the Euler Differentiation
Technique for differential equations. The state of the sys-
tem y; is updated by its first-order movement, i.e, the resid-
ual fo(ys, zt+1). This fundamental idea makes our temporal
model lighter and more interpretable than a normal RNN.
Equation (1), on the other hand, differs from a discretized
ODE because of the introduction of the stochastic discrete-
time variable z. Nonetheless, we recommend that the Euler
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Figure 1: Generative
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Figure 2: Inference model ¢

step size At always be less than 1 to get the temporal model
closer to continuous dynamics. With A - € N to synchronize
the step size with the video frame rate, the updated dynamics
are as follows:

Yerar = Ye + At - fo(ys, 2)¢]+1) 2

The auxiliary variable z; is held constant between two in-
teger time steps in the formulation. It should be noted that
during training or testing, a different A¢ might be utilized.
Due to the chance that each intermediate latent state may be
decoded in the observation space, our model can generate
videos at any frame rate. This capacity allows us to assess
the learned dynamic’s quality while challenging its ODE in-
spiration by evaluating its generalization to the continuous
limit. For the rest of this section, we consider that At = 1
generalization to a smaller At is straightforward as Figure
(1) remains unchanged.

Content Variable

Some video sequence components, such as the terrain, can
be static or include very slightly variations, such as mov-
ing clouds. Since they may not affect the dynamics thus
we model them separately, as (Denton and Birodkar 2017,
Yingzhen and Mandt 2018) have done. We calculate a con-
tent variable w that remains constant throughout the gener-
ation process and is passed into the frame generator along



with y,. It allows the dynamical element of the model to
solely concentrate on movement, making it lighter and in-
creasing stability. Furthermore, it enables us to use archi-
tectural developments in neural networks, such as skip con-
nections (Ronneberger, Fischer, and Brox 2015), to generate
more realistic frames.

This content variable is a deterministic function ¢, of a fixed
(k) _

number k < T of frames xz¢ ' = (Tiy, Tiy, - - -, Tiy, )"
k
w:cw(xg)):cw(xio,xi27...,xik) 3)
ze ~ G(go(y1))

During testing, :vg) are the last k conditioning
frames.

In contrast to the dynamic variables y and z, this content
variable has no probabilistic prior. As a result, the informa-
tion it carries is only confined in the structure rather than in
the loss function as well. To avoid leaking temporal informa-
tion in w, we propose sampling these k frames evenly inside
2o.7 during training. We also built ¢, as a permutation in-
variant function (Zaheer et al. 2017) composed of an MLP
fed with the sum of each frame representation, as shown in
(Santoro et al. 2017).

Due to the absence of prior and architectural limitations, w
can contain as much non-temporal information as feasible
while still excluding dynamic information. On the contrary,
y and z should only include temporal information that w
cannot capture owing to their high standard Gaussian pri-
ors.

This content variable may be deleted from our model, result-
ing in a more traditional deep state-space model.

Variational Inference and Architecture

Following the generative model depicted in Figure (1), the
conditional joint probability of the full model, given a con-
tent variable w, can be written as:

p(zo.1, 21:7, Yo | W)

T T (4)
= p(%o) Hp(zt, Yelye—1) Hp($t|yt, w)

t=1 t=0

with

(26, Yelye—1) = p(2e|ye—1)p(Yelye—1, 2t) Q)

According to Equation (1), p(y¢|yi—1,2¢) = 0(ye — ye—1 —
fo(yt—1, 2¢)), where ¢ is the Dirac delta function centered at
0. Hence in order to optimize the likelihood of the observed
videos p(zo.7|w), we need to infer latent variables y, and
z1.7. This can be done with deep variational inference using
the inference model parameterized by ¢ as shown in Figure
(2), which comes down to considering a variational distribu-
tion gz y defined and factorized as follows:

A
qzy = q(Zl:T7 yO:T|x0:T7 ’LU)
T

a(yolzow) [ [ a(zelzo)a(uelyn—1, 2)
t=1 (6)

T
= q(yolzor) [ [ a(zlzo)p(ylye—1, 1)
t=1

where q(yt|yi—1,2t) = p(yt|ys—1, 2¢) begin the aforemen-
tioned Dirac delta function. This yields the following evi-
dence lower bound (ELBO):

log p(xo.7|w) > L(xo.7;w, 0, ))
2 — Dxula(yolzox) || p(yo)]

T
+EGr,gor)azy {Zlogp(xtlﬂt,w) 7
t=0

T
— ZDKL[q(Zt|CU0:t) [ p(ztgtﬂ]

t=1

where Dy, denotes the Kullback-Leibler (KL) diver-
gence.

The sum of KL divergence expectations implies consider-
ing the full past sequence of inferred states for each time
step due to the dependence on conditionally determinis-
tic variable y;.7. Optimizing £(zo.7; w, 6, 1)) with respect
to model parameter 6 and variational parameters ¢ can
be done efficiently by sampling a single full sequence of
states from gz y per example, and computing gradients by
backpropagation (Rumelhart, Hinton, and Williams 1986),
troughing all inferred variables, using reparameterization
trick (Kingma and Welling 2013). We classically choose
q(yo|xo.k) and q(z¢|xo.¢) to be factorized Gaussian so that
all KL divergences can be computed analytically.

We include an Lo regularization term on residual fy applied
to y, which stabilizes the temporal dynamics of the residual
network, as noted by (Behrmann et al. 2019; de Bézenac,
Ayed, and Gallinari 2019; Rousseau, Drumetz, and Fablet
2019). Given a set of videos X, the complete optimization
problem, where L is defined as in Equation (7), is then given
as:

arg m Z []E () L (0. T,cd,( ) 0,9)

aceX

- /\E@LT,QO:T)NQZ,Y Z ” f9(yt—1,zt) ||2 :|

t=1

®)

The first latent variables are inferred with the conditioning
frames and are then predicted with the dynamic model. In
contrast, each frame of the input sequence is considered for



inference during training, which is done as follows. Firstly,
each frame z; is independently encoded into a vector-valued
representation &, with &; = hy (24). yo is then inferred us-
ing an MLP on the first £ encoded frames Z(.;. Each z; is
inferred in a feed-forward fashion with an LSTM on the en-
coded frames. Inferring z this way experimentally performs
better than, e.g., inferring them from the whole sequence
zo.7; we hypothesize that this follows from the fact that this
filtering scheme is closer to the prediction setting, where the
future is not available.

Experiments
Training

In this section, we qualitatively investigate the dynamics and
latent space learned by our model.

The stochastic nature and originality of the video predic-
tion task make it challenging to evaluate ordinarily (Lee
et al. 2018): because the task is stochastic, comparing the
ground truth and a predicted video is insufficient. We, there-
fore, follow the standard strategy (Denton and Fergus 2018;
Lee et al. 2018), which consists of sampling a specific num-
ber (here, 100 samples) of probable futures from the tested
model and reporting the highest performing sample against
the genuine video for each test sequence. We show this
disparity for two generally used metrics that are computed
frame-by-frame and averaged over time: Peak Signal-to-
Noise Ratio (PSNR, higher is better) and Structured Simi-
larity (SSIM, higher is better) (Horé and Ziou 2010). PSNR
penalizes inaccuracies in projected dynamics since it is a
pixel-wise measurement derived from L2 distance, but it
may also favor fuzzy predictions. To avoid this problem,
SSIM compares local frame patches, although this results in
some dynamics information being lost. We considered these
two measures to be complementary since they capture dis-
tinct sizes and modalities.

We present experimental results on the GOES data that is
briefly presented in the following section. We also com-
pare our model against SVG (Denton and Fergus 2018) and
StructVRNN (Minderer et al. 2019). SVG has the most simi-
lar training and architecture among the models. To make fair
comparisons using this technique, we employed the same
neural architecture as SVG for our encoders and decoders.
Unless otherwise indicated, our model is evaluated with the
same At as in training, as shown in Equation (2).

Dataset

We used GOES-16 CONUS (ABI-L1b-RadC) infrared ABI
spectral bands (band 7 - 16) (NASA 2017), specifically at
night from 22:00:00 to 5:00:00 CST (UTC-5) or 5:00:00 to
12:00:00 UTC. The dataset can be pulled directly from AWS
s3 (AWS 2022). We set the data from day 80 to day 135 of
the year 2022, which is 56 days or eight weeks. For each
band, there will be a total of 4704 slices.

Preprocessing

Initially, each slice will be 1500 x 2500. Since a single slice
sizes around 3-4Mb, we decided to crop to 256 x 256 to,

Listing 1 Normalization

1 def normalization(crop: da.Array) —-> da.

Array:

2 stack_len, _, _ = crop.shape

3

4 dif_max = da.nanmax (crop, axis=(1,

2))
5 dif_min = da.nanmin (crop, axis=(1,
2))

6

7 new_crop_stack = []

8 for i in range(stack_len):

9 curr = cropl[i]

10 new_crop_stack.append ( (curr -
dif min[i]) / (dif_max[i] -
dif_minf[il))

11

12 new_crop_stack = da.stack(

new_crop_stack, axis=0)

13 return new_crop_stack

first of all, cut down the size and, as it follows, speed up
the calculation. Doing so will center our focus on the Mid
and Southern regions of the US where wildfires typically
erupt during spring and summer. Each pixel represents the
value of radiance of brightness in each band. Firstly, we have
to convert the other band’s radiance temperature into band
7’s radiance temperature. We then calculate its brightness
temperature by applying the Planck function, and the spec-
tral bandpass correction into radiance temperature (NOAA
2017a):

fk2
log(% + 1)

where L, is the radiance, fk; and fko are coefficients of
the Planck function derived from physical constants (i.e., the
speed of light, the Boltzmann constant, and the Planck con-
stant) and the bandpass central wavenumber, and bc; and
bco are the spectral response function offset and scale cor-
rection terms. These four coefficients are included in the
product metadata as variables: planck_fk1, planck_fk2,
planck_bcl, and planck_bc2 (NOAA 2019).

BT = [ — bcl} X L 9

bCQ

Next, we will calculate the radiance of band b in band 7
(NOAA 2017a):

[k

I
eXp(BTxbc§+bc1> -1

Rady in 7 = (10)

After that, we normalized every band into the domain of
[0,1] to evenly cut down the size. Notice here we used
dask.array to store chunks instead of numpy, which can
cause bottleneck while calculating the data (1):

We treated each band slice as a single channel for our
image. Therefore a single “image” can have 10 “chan-
nels.” To explore the data’s stochastic characteristics, we
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Figure 4: Band 7 and crop region

can stack them to create a ’video” with 12 frames in to-
tal video.shape = (12, 10, 256, 256).Finally,
videos are compressed as .npz files to reduce the size and
increase the flexibility in storing.

Results and Discussion

We trained the model on our GOES-16 dataset. The dataset
is highly stochastic as the cloud can change its direction any-
time. We set the size of both the state-space variable y and
auxiliary variable z to 20. For the Euler step shown in Equa-
tion (2), we set it to 2. We used 2 conditioning frames to gen-
erate the next h frames, as shown in Figure (5). Our method
averages 40.43 on PSNR and 0.934 on SSIM. As discussed
by (Villegas et al. 2017), expanding network capacity can
enhance the performance of such variational models. How-
ever, this is outside the scope of our work.

Here, we challenge the ODE inspiration of our model. Equa-
tion (2) amounts to learning a residual function f , , over
t € [|t],[t] + 1]. We aim to test whether this dynamic is
close to its continuous generalization:

40 \'\
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Figure 5: PSNR and SSIM scores with respect to ¢t the
dataset.
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Figure 6: Loss vs. epochs over time
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dy

= Loy ) (1)

which is a piecewise ODE. To this end, we refine this Eu-
ler approximation during testing by using %; if this main-
tains the performance of our model, then the dynamic rule of
the latter is close to the piecewise ODE, as shown in Figure

.

Conclusion and Future Works

We provide a unique dynamic latent model for stochastic
video prediction that decouples frame synthesis and dynam-
ics, unlike previous image-autoregressive models. This tem-
poral model is based on residual updates of a tiny latent
state and has outperformed RNN-based models. This con-
fers numerous desired qualities for our strategy, including
temporal economy and latent space interpretability. We em-
pirically illustrate the proposed model’s performance and
benefits, which beats previous state-of-the-art approaches
for stochastic video prediction. To the best of our knowl-
edge, this is the first paper to offer a latent dynamic model
that scales for video prediction. The suggested model is
particularly innovative compared to current work on neu-
ral networks and ODEs for temporal modeling; it is the first
residual model to scale to complex stochastic data such as
videos.

This study also verifies the model’s effectiveness on wild-
fire prediction where high sensitivity is required and early
prediction could be obtained. Experiments showed that the
proposed architecture achieved relatively competitive recon-
structed accuracy and reliable recognition. However, there
might still be limitations in terms of comprehensive wildfire
prediction even though fire regions could be synthesized in
precise detail. Besides, various weather conditions such as
fog and snow may also hinder data capability.

The major principles of our method (state-space, residual
dynamic, static content variable) may be applied to differ-

ent models. We will supply a large amount of data for fu-
ture studies, from GOES-16 (East) and GOES-17 (West),
to increase variety in wildfire circumstances. Furthermore,
instead of employing ten bands, we may enhance our gen-
eral characteristic of picture slices by mixing all visible and
near-infrared bands with infrared to produce a full 16-band
image. This gives the output a more distinct and realistic
appearance, therefore the produced frames will have more
informative values.
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