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Abstract

The availability of reliable, high-resolution climate and
weather data is important to inform long-term decisions on
climate adaptation and mitigation and to guide rapid re-
sponses to extreme events. Forecasting models are limited by
computational costs and therefore often can only make coarse
resolution predictions. Statistical downscaling can provide an
efficient method of upsampling low-resolution data. In this
field, deep learning has been applied successfully, often us-
ing image super-resolution methods from computer vision.
Despite achieving visually compelling results in some cases,
such models often violate conservation laws when predicting
physical variables. In order to conserve important physical
quantities, we develop methods that guarantee physical con-
straints are satisfied by a deep downscaling model while also
increasing their performance according to traditional metrics.
We introduce two ways of constraining the network: A renor-
malization layer added to the end of the neural network and a
successive approach that scales with increasing upsampling
factors. We show the applicability of our methods across
different popular architectures and upsampling factors using
ERA5 reanalysis data.

Introduction
Accurate modeling of weather and climate is critical for
taking effective action to combat climate change. In ad-
dition to shaping global understanding of climate change,
local and regional predictions shape adaptation decisions
and provide impetus for action to reduce greenhouse gas
emissions. Predicted and observed quantities such as pre-
cipitation, wind speed, and temperature impact decisions
in fields like agriculture, energy, and transportation. While
these quantities are often required at a fine geographical and
temporal scale to ensure informed decision making, most
climate and weather models are extremely computationally
expensive to run, resulting in coarse-resolution predictions,
while observations are often sparsely available. Thus, there
is a need for fast methods that can generate high-resolution
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data based on the low-resolution models that are commonly
available.

The terms downscaling in climate science and super-
resolution (SR) in machine learning (ML) refer to learning
a mapping between a low-resolution (LR) input sample and
a high-resolution (HR) version of that sample. Downscal-
ing via established statistical methods—statistical down-
scaling—has been long used by the climate science com-
munity to increase the resolution of climate data (Maraun
and Widmann 2018). In parallel, computer vision SR has
evolved rapidly using various deep learning architectures,
with such methods now including super-resolution convo-
lutional neural networks (CNNs) (Dong et al. 2016), gen-
erative adversarial models (GANs) (Wang et al. 2018), vi-
sion transformers (Yang et al. 2020), and normalizing flows
(Lugmayr et al. 2020). Increasing the temporal resolution
via frame interpolation is also an active area of research
for video enhancement (Liu et al. 2017) that can be trans-
ferred to spatio-temporal climate data. Recently, deep learn-
ing approaches have been applied to a variety of climate and
weather datasets, covering both model output data and ob-
servations. Climate super-resolution has mostly focused on
CNNs (Vandal et al. 2017), recently shifting towards GANs
(Stengel et al. 2020).

Generating high-resolution data with machine learning
can produce realistic-looking images and good predictive
accuracy. However, a major obstacle often encountered
when applying ML to a physical system such as the Earth’s
atmosphere is that the predicted output values can violate
physical laws such as conservation of energy, momentum,
and moisture. More broadly, there are numerous domains
of ML for societal benefit in which satisfaction of physical
constraints is fundamentally important. Examples include
the discovery of new materials for energy and healthcare,
aerodynamics simulations for efficient vehicles, and optimal
control in industrial settings.

In this work, we introduce a novel method to strictly
enforce physical constraints between low-resolution (input)
and high-resolution (output) images. Using ERA5 reanalysis
data, we build datasets to learn the upsampling with differ-



ent factors ranging from 2 up to 16 times enhancement. We
introduce a renormalization layer that can either be added
as the last layer to any network architecture or successively
after each upsampling part, developing a new SR network
architecture. Besides looking at spatial SR, we also include
temporal SR or frame interpolation, demonstrating that our
methodology works across all these architectures.

Our novel constraining methodology is not only appli-
cable to SR tasks in scientific areas, but it can also con-
strain neural networks for emulation and prediction. Climate
model emulation tasks like done by Beucler et al. (2021)
and Harder et al. (2021) could benefit from using our con-
straining layer. Within the SR domain, our work could have
implications beyond scientific datasets as the constraining
methodologies can advance state-of-the-art SR more gener-
ally.

Contributions Our main contributions can be summa-
rized as follows:

• We introduce a novel constraining methodology and
show that it improves the performance of a wide vari-
ety of deep learning architectures for super-resolution. In
general, it can be applied to any existing neural architec-
ture.

• Applied to a super-resolution neural network our con-
straining methodologies guarantee that physical con-
straints such as mass conservation are satisfied in the pre-
diction.

• Besides a single constraints layer we introduce a succes-
sive constraining methodology that makes constrained
super-resolution more feasible for large upscaling fac-
tors.

• We introduce a new deep learning architecture for down-
scaling that both increases the spatial and temporal reso-
lution.

Related Work
Deep Learning for Climate Downscaling There exists
extensive work on ML methods for climate and weather ob-
servations and predictions, from CNN architectures (Vandal
et al. 2017) to GANs (Stengel et al. 2020) and normalizing
flows (Groenke, Madaus, and Monteleoni 2020). Recently,
especially GANs have become a very popular architecture
choice, including many works on precipitation model down-
scaling (Wang et al. 2021; Watson et al. 2020; Chaudhuri
and Robertson 2020) as well as other quantities such as wind
and solar data (Stengel et al. 2020). First unified frameworks
comparing methods and benchmarks were introduced: Baño
Medina, Manzanas, and Gutiérrez (2020) assess different
SR-CNN setups and Kurinchi-Vendhan et al. (2021) pub-
lished a dataset for wind and solar SR data. An area with
only limited research to this date—despite its high practi-
cal relevance—is performing spatio-temporal SR. Some pa-
pers have looked at super-resolving multiple time steps at
once, but not increasing the temporal resolution (Harilal,
Singh, and Bhatia 2021; Leinonen, Nerini, and Berne 2021),
whereas Serifi, Günther, and Ban (2021) increases the tem-

poral resolution by just treating the time-steps as different
channels and using a standard SR-CNN.

Constrained Learning for Climate Various works on
ML for climate science have attempted to enforce certain
physical constraints via soft penalties in the loss (Beucler
et al. 2019) or linearly constrained neural networks for con-
vection (Beucler et al. 2021) or aerosol microphysics emu-
lation (Harder et al. 2022). Outside climate science, recent
works have emerged on enforcing hard constraints on the
output of neural networks (Donti, Rolnick, and Kolter 2021).

Constrained Learning for Downscaling For solving
super-resolution for turbulent flows, MeshfreeFlowNet
(Jiang et al. 2020) employs a physics-informed model
adding PDEs as regularization terms to the loss function.
To the best of our knowledge, there is no published work
on hard-constrained ML models for SR/downscaling. A
preprint (Geiss and Hardin 2020) introduces an enforcement
operator applied to multiple CNN architectures for scien-
tific datasets while another more recent preprint applies that
method to atmospheric chemistry model downscaling using
a CNN (Geiss, Silva, and Hardin 2022).

Enforcing Constraints
When modeling physical quantities such as precipitation or
water mass, principled relationships such as mass conser-
vation can naturally be established between low-resolution
and high-resolution samples. Here, we introduce a new
methodology to incorporate these constraints within a neu-
ral network architecture. We choose hard constraints en-
forced through the architecture over soft constraints that use
an additional loss term. Hard constraints guarantee certain
constraints even at inference time, whereas soft constrain-
ing encourages the network to output values that are close
to satisfying constraints, while minimizing a penalty during
training, but do not provide any guarantees. Additionally, for
our case hard constraining increases the predictive ability
and soft constraining can lead to unstable training and an
accuracy-constraints trade-off (Harder et al. 2022).

Setup
Consider the case of N times downscaling and let n := N2.
Let yi, i = 1, . . . , n be the values in the predicted high-
resolution data point that correspond to low-resolution pixel
x. The downscaling/conservation constraint is given by the
following:

1

n

n∑
i=1

yi = x. (1)

As we model mass per area, conserving the mean in the
SR image means conserving the overall mass.

Constraints Layer
Let ỹi, i = 1, . . . , n be the intermediate outputs of the neural
network before the constraints layer. At the end of a network
architecture we take these outputs and rescale them using the
corresponding input value x:

yj = ỹj ·
x

1
n

∑n
i=1 ỹi

. (2)



This operation is called the constraints layer (CL), it guar-
antees Equation 2 to be satisfied and it can be added to the
end of a neural network as shown in Figure 2.

Figure 1: Our constraining methodology shown for one input
pixel x and the softmax constraining on the corresponding
predicted 2× 2 patch for the case of 2 times upsampling.

Figure 2: The CNN architecture for 2 times upsampling in-
cluding the constraints layer (in red). For higher upsam-
pling factors this architecture is applied recursively, either
with (see successive constraining) or without the constraints
layer.

For predicting quantities like atmospheric water content,
we also want to enforce the output to be positive and, there-
fore, physically valid. Here, we use a softmax multiplied by
the corresponding input pixel value x:

yj = exp (ỹj) ·
x

1
n

∑n
i=1 exp (ỹi)

. (3)

We call this layer the softmax constraints layer (SMCL).
It not only enforces our equality constraints, but also our
positivity constraints: yi ≥ 0, i = 1, . . . , n. Including the
exponential function also changes the distribution, making
it more extreme/peakier, which can help with the common
problem of having too smooth predictions while optimizing
the MSE.

The constraints are applied for each pair of input pixel x
and the corresponding SR N × N patch. An illustration is
shown in Figure 1.

Successive Constraining
Building on the constraints layer introduced before, we de-
velop a methodology that scales well with increasing upsam-
pling factors. Here the constraints layer is applied multiple
times, increasing the resolution by a factor of 2 each time,
via either our CL or SMCL. An example is shown in Figure
3: Starting from our LR input, a medium-resolution interme-
diate prediction is produced, which is then constrained using
the LR image. The final SR image is constrained using the
medium-resolution one.

Figure 3: Our successive constraining approach visualized
for 4 times upsampling here. Each of the CNNs is built as
shown in Figure 2. A medium-resolution intermediate out-
put is predicted that is constrained by the LR image and then
used for constraining the final SR prediction.

Experimental Setup
Data
ERA5 Dataset The ERA5 dataset is a so-called reanal-
ysis product from the European Center for Medium-Range
Weather Forecast (ECMWF) that combines model data
with worldwide observations. The observations are used as
boundary conditions for numerical models that then predict
various atmospheric variables. ERA5 is available as global,
hourly data with a 0.25◦×0.25◦ resolution, which is roughly
25 km per pixel. It covers all years starting from 1950. For
this work, we focus on the total column water (tcw) that is
given in kg

m2 and describes the vertical integral of the to-
tal amount of atmospheric water content, including water
vapour, cloud water, and cloud ice but not precipitation.

Figure 4: Samples of the three different dataset types used
in this work. a) A data pair we use for our standard spa-
tial super-resolution task. The input is an LR image and the
target is the HR version of that. b) A data pair for perform-
ing SR for multiple time steps simultaneously. The input is
a time series of LR images and the output is the same time
series in HR. c) A data pair where SR is performed both tem-
porally and spatially, with two LR time steps as input and 3
HR time steps as a target.

Spatial SR Dataset To obtain our high-resolution data
points we extract a random 128 × 128 pixel image from
each available time step (each time step is 721 × 1440 and
there are roughly 60,000 time steps available). We randomly
sample 40,000 data points for training and 10,000 for each
validation and testing. The low-resolution counterparts are
created by taking the mean over N ×N patches, where N is
our upsampling factor, following standard practice as in e.g.
Serifi, Günther, and Ban (2021). A sample pair is shown in
Figure 4 a). This is the physically correct way to create the



low-resolution images since conservation of water content
means that the water content (density per squared meter) de-
scribed in an LR pixel should equal the mean of the values
in the corresponding HR pixels.

Spatio-Temporal Datasets Including the temporal evolu-
tion of our data, we create two additional datasets. For the
first dataset, one sample consists of 3 successive time steps,
the same time steps for both input and target, but at different
resolutions. This is done to perform spatial SR for multiple
time steps simultaneously, see Figure 4 b). Per global image
we select 3 random 128 × 128 pixel areas, resulting in the
same number of examples as the procedure described above.
We split the data randomly as before, and each time step is
downsampled by taking the spatial mean. To increase both
spatial and temporal dimensions, we again crop 3 images
out of a series of 3 successive time steps. To create the low-
resolution input, we take every other time step and compute
the mean spatially, resulting in 2 LR inputs, see Figure 4 c).

Architectures
We test our constraints methods throughout a variety of stan-
dard deep learning SR architectures including an SR CNN,
conditional GAN, a combination of an RNN and CNN for
spatio-temporal SR as well as apply them to a new architec-
ture combining optical flow with CNNs/RNNs to increase
the resolution of the temporal dimension. The original, un-
constrained versions of these architectures then also serve as
a comparison for our constraining methodologies.

SR-CNNs The SR CNN network consists of convolutional
layers using 3 × 3 kernels and ReLU activations. The up-
sampling is done by a transpose convolution followed by
residual blocks. The architecture for 2 times downscaling is
shown in Figure 2.

SR-GAN The conditional GAN architecture uses the
above introduced CNN architecture as the generator net-
work. The discriminator simply consists of convolutional
layers with a stride of 2 to decrease the dimensionality in
each step and ReLU activations. It is trained as a classifier to
distinguish SR images from real HR images using a binary
cross entropy loss. The conditional GAN takes as input both
Gaussian noise as well as the LR data and then generates
an SR output. It is trained with a combination of an MSE
loss and the adversarial loss given by the discriminator, like
a standard SR GAN, e.g. Ledig et al. (2017).

SR-ConvGRU We apply an SR architecture presented
by Leinonen, Nerini, and Berne (2021), which uses Con-
vGRU layers to address the spatio-temporal nature of super-
resolving a time-series of climate data.

SR-VoxelConvGRU To increase the temporal resolution
of our data we employ the Deep Voxel Flow method (Liu
et al. 2017), a deep learning architecture for video frame
interpolation combining optical flow methods with neural
networks. We introduce a new architecture by stacking the
Deep Voxel Flow model and the ConvGRU network (Vox-
elConvGRU): First, we increase the temporal resolution re-
sulting in a higher-frequency time-series of LR images on

which we then apply the ConvGRU architecture to increase
the spatial resolution. The combined neural networks are
then trained end-to-end.

Training
Our models were trained with the Adam optimizer, a learn-
ing rate of 0.001, and a batch size of 256. We trained for 200
epochs, which took about 3—6 hours on a single NVIDIA
A100 Tensor Core GPU, depending on the architecture. All
models use the MSE as their criterion, the GAN additionally
uses its discriminator loss term.

Baselines
As a simple non-ML baseline we use bicubic interpolation
for spatial SR and take the mean of two frames for tempo-
ral SR. As a stronger baseline, we also run experiments with
the enforcement operator, introduced by Geiss and Hardin
(2020), which we refer to as G-H. Their constraining opera-
tor, tested in the context of SR CNNs only, is as follows:

yj = ỹj + (x− 1

n

n∑
i=1

ỹi) ·
σ + ỹi

σ + 1
n

∑n
i=1 ỹi

, (4)

with σ := sign( 1n
∑n

i=1 ỹi − x). Furthermore, we always
compare against an unconstrained version of the above intro-
duced standard SR NN architectures (SR-CNN, SR-GAN,
SR-ConvGRU, SR-VoxelConvGRU).

Results
As standard SR metrics, we report the peak signal-to-noise
ratio (PSNR) and the structural similarity index measure
(SSIM) for all our experiments. Additionally, we report how
much mass conservation is violated.

We can see in Tables 1, 2, 3 and 4 that for all cases ap-
plying constraining methodologies does not only enforce
mass conservation, but also improves both PSNR and SSIM
scores. This shows that we achieve better performance
than standard SR neural architectures without a constrain-
ing layer. Due to numerical reasons, the mass conservation
scores vary across constraining methodologies. The G-H op-
erator is in all cases weaker when it comes to exactly en-
forcing the constraints compared to our constraining meth-
ods, which achieve up to an order of magnitude more accu-
rate mass conservations. Overall the predicted values have
a mean value of around 20 kg

m2 , therefore the violations are
relatively small among all constraining methodologies. For
each upsampling factor and both CNNs and GANs applying
constraints can increase PSNR and SSIM scores compared
to the same architecture without any constraints. In general,
the SMCL is giving improved results in comparison with
the CL. Successive constraining shows slightly better results
than a single constraints layer but the achieved improvement
decreases with bigger upsampling factors. For GANs the im-
provement caused by constraining is even more pronounced
than in CNNs. An example of spatial SR prediction for dif-
ferent methods can be found in Figure 5. Tables 3 and 4 show
that constraining works well also for spatio-temporal down-
scaling. Especially, our VoxelConvGRU architecture bene-



Figure 5: One example image chosen randomly from the test set. Shown here is the LR input, different constrained and uncon-
strained predictions and the HR image as a reference.

Table 1: Metrics for different constraining methods applied to an SR CNN, calculated over 10,000 test samples. Best scores are
highlighted in bold, second best in blue. The metrics shown are PSNR/SSIM/Mass violation.

MODEL CONSTRAINT 2X 4X 8X 16X

BICUBIC - 52.2/99.88/6.6e−2 44.3/99.29/1.7e−1 38.5/98.08/3.2e−1 33.6/96.62/5.1e−1

SR-CNN NONE 56.0/99.94/1.5e−2 47.5/99.58/3.1e−2 40.7/98.56/6.0e−2 35.1/97.1/8.3e−2

SR-CNN G-H 57.0/99.95/1.6e−6 47.9/99.60/1.1e−5 40.8/98.55/4.4e−6 35.1/97.0/1.7e−6

SR-CNN CL (OURS) 56.3/99.94/8.6e−7 47.9/99.60/1.3e−6 40.5/98.48/1.2e−6 35.1/97.0/4.4e−6

SR-CNN SMCL (OURS) 57.0/99.95/8.7e−7 47.9/99.60/1.4e−6 40.7/98.54/2.2e−6 35.1/97.1/4.4e−6

SR-CNN CL SUCC. (OURS) - 47.8/99.60/1.1e−6 40.8/98.57/6.2e−7 35.2/97.1/7.0e−7

SR-CNN SMCL SUCC. (OURS) - 47.9/99.61/1.1e−6 40.9/98.59/6.0e−7 35.2/97.1/7.1e−7

Table 2: Scores for different constraining methods applied to
a SR GAN architecture, calculated over 10,000 test samples.
Best scores are highlighted in bold, second best in blue. The
metrics shown are PSNR/SSIM/Mass violation.

MODEL CONSTRAINT METRICS

BICUBIC - 44.3/99.29/1.7e−1

SR-GAN NONE 46.5/99.50/4.6e−2

SR-GAN G-H 47.4/99.56/2.3e−6

SR-GAN CL (OURS) 46.9/99.53/1.4e−6

SR-GAN SMCL (OURS) 47.3/99.56/1.3e−6

fits from the SCML methods. A time-series plot is shown in
Figure 7.

Conclusion
This work shows a novel methodology to incorporate
physics-based constraints into neural network architectures
for climate downscaling. Our constrained models not only

Table 3: Scores for different constraining methods applied to
the SR ConvGRU architecture, calculated over 10,000 test
samples for 4 times upsampling. Best scores are highlighted
in bold, second best in blue. The metrics shown are PSNR/S-
SIM/Mass violation.

MODEL CONSTRAINT METRICS

BICUBIC - 44.2/99.28/1.7e−1

SR-CONVGRU NONE 44.8/99.37/1.8e−1

SR-CONVGRU G-H 48.3/99.64/5.5e−5

SR-CONVGRU CL (OURS) 44.7/99.30/1.3e−6

SR-CONVGRU SMCL (OURS) 48.2/99.63/1.3e−6

guarantee to satisfy conservation laws like mass conserva-
tion or their outputs but also increase predictive performance
across different architectures. Additionally, we introduce a
new architecture that does both super-resolution in spatial
and temporal domain, while still respecting mass conserva-
tion. We present the first approach to progressively down-



Figure 6: One example image chosen randomly from the test
set. Each model was trained for the same target resolution
but with a different upsampling factor. First row shows the
prediction of an unconstrained CNN, second row one that
leverages the SMCL.

Table 4: Scores for different constraining methods applied to
our VoxelConvGRU SR architecture, calculated over 10,000
test samples for 4 times upsampling spatially and 2 times
temporally. Best scores are highlighted in bold, second best
in blue.

MODEL CONSTRAINT METRICS

BICUBIC+INTERP. - 42.9/99.18/3.1e−1

SR-VOXELCONVGRU NONE 45.1/99.40/1.5e−1

SR-VOXELCONVGRU G-H 44.7/99.38/1.7e−6

SR-VOXELCONVGRU CL (OURS) 44.0/99.16/8.7e−7

SR-VOXELCONVGRU SMCL (OURS) 47.9/99.62/8.7e−7

scale and constrain, introducing a promising method for
large-scale downscaling.

Next steps include extending the evaluation to different
SR climate datasets as well as applying the constraining lay-
ers to other climate or scientific ML tasks. One possible fu-
ture direction could be transferring the constraining method-
ologies to super-resolution task in general and advancing
their performance using our methods.
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