Towards Generating Large Synthetic Phytoplankton Datasets
for Efficient Monitoring of Harmful Algal Blooms

Nitpreet Bamra!, Vikram Voleti>®, Alexander Wong'?, Jason Deglin

t1’2

'University of Waterloo,
2Blue Lion Labs,
*Mila, University of Montreal
{nbamra, jdeglint} @uwaterloo.ca

Abstract

Climate change is increasing the frequency and sever-
ity of harmful algal blooms (HABs), which cause sig-
nificant fish deaths in aquaculture farms. This con-
tributes to ocean pollution and greenhouse gas (GHG)
emissions since dead fish are either dumped into the
ocean or taken to landfills, which in turn negatively
impacts the climate. Currently, the standard method to
enumerate harmful algae and other phytoplankton is
to manually observe and count them under a micro-
scope. This is a time-consuming, tedious and error-
prone process, resulting in wrong counts and com-
promised management decisions by farmers. Hence,
automating this process for quick and accurate HAB
monitoring is extremely helpful. However, this requires
large and diverse datasets of phytoplankton images,
and such datasets are hard to produce quickly. In this
work, we explore the feasibility of generating novel
high-resolution photorealistic synthetic phytoplankton
images, containing multiple species in the same im-
age, given a small dataset of real images. To this end,
we employ Generative Adversarial Networks (GANs)
to generate synthetic images. We evaluate three differ-
ent GAN architectures: ProjectedGAN, FastGAN, and
StyleGANV2 using standard image quality metrics. We
empirically show the generation of high-fidelity syn-
thetic phytoplankton images using a training dataset of
only 961 real images. Thus, this work demonstrates
the ability of GANS to create large synthetic datasets
of phytoplankton from small training datasets, accom-
plishing a key step towards sustainable systematic mon-
itoring of harmful algal blooms.

Introduction

When different phytoplankton and algae species grow un-
controllably, they can form harmful algal blooms (HABs).
These HABs can produce lethal toxins and hypoxic “dead”
zones, causing catastrophic impacts on various industries
such as aquaculture and real estate (Brooks et al. 2016),
as well as negatively impacting wildlife and the environ-
ment (Granéli and Turner 2006). Further, research shows
that climate change is increasing the frequency and sever-
ity of these HABs (Wells et al. 2020). For example, in 2016,
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a HAB outbreak in Chile killed over 27 million farmed trout
and salmon (Montes et al. 2018). Furthermore, from 2015-
2019, farmed salmon deaths due to fatal diseases caused by
HABs increased by 27.8% from 41.3 to 52.8 million (Pers-
son et al. 2022). When millions of fish die due to HABs and
other diseases, they are disposed of by being dumped back
into the ocean, causing ocean pollution, or being brought
to landfills, causing increased greenhouse gas (GHG) emis-
sions (Armijo et al. 2020; Bustos, Ramirez, and Rudolf
2021). Furthermore, as GHG emissions increase, the sur-
face temperature and acidity of water bodies increase simul-
taneously, creating an ideal environment for HABs to grow,
thereby leading to an endless cycle of increasing GHG emis-
sions (Moore et al. 2008).

A promising solution to mitigate this problem is quicker
and more consistent monitoring of HABs as early detection
allows for treatment to occur before the blooms rapidly du-
plicate. This would improve farm yields, as well as reduce
ocean pollution and GHG emissions. However, rapid identi-
fication is challenging due to the extremely time-consuming,
tedious and error-prone process for a taxonomist to manu-
ally analyze and classify these algae species (McQuatters-
Gollop et al. 2017).

Given digital microscopy and novel deep learning meth-
ods, it is possible to improve both the speed and accuracy of
current algae detection methods (Salido et al. 2020). How-
ever, such methods require the collection of large and diverse
phytoplankton datasets, which is both expensive and tedious,
thereby limiting the effectiveness of current HAB monitor-
ing as shown in the “Current Method” section of Figure 4.
Moreover, it is important that such datasets match real im-
ages as far as possible, so they should ideally include multi-
ple phytoplankton species in the same image.

In this work, we propose a framework to generate high-
fidelity and diverse synthetic datasets of phytoplankton, mo-
tivated by the potential to expedite, improve, and standard-
ize algae and phytoplankton detection. This is shown in the
“Proposed Method” section of Figure 4. We utilize Gener-
ative Adversarial Networks (GANs) to generate novel syn-
thetic images, but in principle any image generation tech-
nique could be used. Our main contributions in this work
are: (1) we explore three state-of-the-art (SOTA) GAN archi-
tectures for generating synthetic datasets of image samples
containing multiple phytoplankton species, (2) we evaluate
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Figure 1: The current (top) and proposed (bottom) deep
learning algae detection methods. Our proposed framework
leads to improved HAB monitoring, the initial step being the
generation of a large and synthetic algae dataset.

the generated images using standard image quality metrics
and peer reviews, and (3) we validate the novelty of gener-
ated images by checking for memorization of the training
images.

Related Works

A study published in 2017 (Wang et al. 2017) suggested
that convolutional neural networks tend to be biased towards
larger specimen classes. It then proposed to use the Condi-
tional GAN model (Mirza and Osindero 2014) to generate
synthetic images of plankton species to address the hard-
ships of species generation given few per-class examples.

Another study published in 2021 (Li et al. 2021) explores
the use of the CycleGAN model (Zhu et al. 2017) to address
the imbalance within the classes of plankton species by gen-
erating more of the low-class species. The CycleGAN ar-
chitecture allows for image-to-image translation by learning
and interchanging the mapping features of the two images.

Lastly, a 2022 study from Inje University (Abdullah et
al. 2022) focused on using the DCGAN model (Radford,
Metz, and Chintala 2016) to generate microscopic images
of phytoplankton to enhance the size of their dataset. The
DCGAN model is an extension of the original GAN model,
the main difference being the use of deep convolutional neu-
ral networks for both the discriminator and generator, in-
stead of fully connected layers. This study used a dataset of
400 single-organism microscopic images of 4 different algae
species. They fed these 400 images to the DCGAN, using it
as an “advanced augmentation” tool to double their dataset.

In contrast, our investigation focuses on generating a
novel high-quality synthetic dataset of 11 organism types, in
which each image contains multiple algae species. Further-
more, we explore three different SOTA GAN architectures,
and generate high-resolution images.

Methodology

GANs are some of the most effective machine learning
frameworks for generating synthetic outputs from random

noise inputs (Goodfellow et al. 2014). A GAN model con-
tains two sub-models: a generator G and a discriminator D.
The generator works to create realistic synthetic images, and
the discriminator deciphers whether an image is real or gen-
erated. To improve the quality of the generated images, the
two sub-models compete against each other in a two-player
min-max game, the objective is calculated using Equation 1:

mgn mgac(Em [log D(x)] + E.[log(1 — D(G(2)))]) (1)

In Equation 1, D(z) and D(G(z)) denote the probabil-
ity that an instance of real data x or generated images G(z)
from noise instance z is from the real dataset or the genera-
tor. £, and E, denote the expected values from all real data
inputs to the discriminator and random noise inputs to the
generator, respectively.

GAN Architectures

Three SOTA GAN models that have proven to consistently
be capable of producing high-fidelity synthetic images are
the ProjectedGAN (Sauer et al. 2021), FastGAN (Liu et al.
2021), and StyleGANV2 (Karras et al. 2019).

Projected GAN. The ProjectedGAN (Sauer et al. 2021)
works by projecting features from both generated and real
images into a pre-trained feature space instead of the stan-
dard input space. The min-max equation of ProjectedGAN
differs from that of vanilla GAN by introducing projections
of different feature vectors P,(x) into the discriminator’s
original input space, and is calculated using Equation 2:

mgn maz Liec(Ezllog D,(P,(x))]

+ E.llog1 - D,(R(G(=)))) @

In Equation 2, D, denotes a set of independent discrimina-
tors which operate on distinct projected features and 3J,¢¢
denotes the summation of all components in the equation.

FastGAN. The FastGAN (Liu et al. 2021) model reduces
the significant computational needs and the large number
of training images required for a GAN to train, by incorpo-
rating a Skip-Layer channel-wise Excitation (SLE) module.
The SLE module is calculated using Equation 3, where y is
the output feature map of the SLE model, W; is the weight
which needs to be learned by the model, and 4./ hig TEP-
resent the low/high resolution feature maps, respectively.

y= F(xloun (Wz)) * Thigh (3)

StyleGANvV2. The StyleGANv2 (Karras et al. 2019) works
by transforming the input noise vector into an “ intermediate
latent code” using a mapping network. These intermediate
codes represent multiple distinct “styles”, which allows for
the GAN to generate images with multiple layers of details,
ranging from course details like algae shape and orientation,
to fine details like algae flagella and cilia. These “styles” are
then processed through an adaptive instance normalization
(AdalN) process, as explained in Equation 4:

erybi 4)

AdaIN (x.9) = o, P 1y,



(a) Projected GAN Images

(b) FastGAN Images

(c) StyleGANvV2 Images (d) Real Images

Figure 2: (a)-(c) Generated images from the three different GANSs, as well as (d) real images from the training dataset. Observe
that when comparing to real images (d), ProjectedGAN has the least realistic generated images (a), the FastGAN has slightly
more realistic generated images (b), and the SytleGANV2 has the most realistic images (c). For each whole 1024x1024 image
(left), an enhanced image of a single algae specimen is provided (right).

In Equation 4, z; represents a feature map, y; and y, rep-
resent corresponding scalar component from the respective
style and /o represent scalable factors for input normaliza-
tion (Huang and Belongie 2017).

Image Quality Metrics

Overall, since each GAN model has distinct advantages and
disadvantages, the effectiveness of each GAN can be evalu-
ated using both image quality and computational metrics.

In terms of computational statistics, the metrics measured
in this investigation are: dataset size, dataset image resolu-
tion, number of iterations, batch size and time to train. In
terms of image quality, the two metrics evaluated in this in-
vestigation are Fréchet inception distance (FID) and Kernel-
inception distance (KID).

In this investigation, some industry standard image qual-
ity metrics, such as Structure similarity (SSIM) (Wang et al.
2004) and Mean-squared error (MSE) (Yang et al. 2017),
are not appropriate since these metrics directly compare the
corresponding pixel values of a real and generated image.
This is inapplicable since this investigation looks to gener-
ate novel phytoplankton images with species in various lo-
cations across the image. Although the FID and KID met-
rics may not capture all domain-specific considerations, they
compare the feature vectors between the generated and real
images and thereby provide and adequate insight into the
similarities between the two image distributions.

Fréchet Inception Distance. The FID metric (Heusel et al.
2017) compares the distribution of generated images with
the distribution of authentic images by calculating the dif-
ference between the feature vectors for the generated and
real images as shown in Equation 5:

& ((m, C), (M, C)) = [Jm = my|[3
+Tr(C + Cy — 2(CCLH)Y2 (5)

In Equation 5, m and C are the mean and covariance feature
polynomial from the generated images, m,, and C,, is the
mean and covariance feature polynomial acquired from the
training dataset, and 7'r is the linear trace function.

Kernel Inception Distance. The KID metric (Bifikowski et
al. 2018) is similar to FID, with the main difference being
that KID measures the squared maximum mean discrepancy
M M D between the real image feature representations fi.cq;
and fake image feature representations frqie, as shown in
Equation 6:

KID :MMD(freal, ffake)2 (6)

Datasets

The dataset used in this investigation contains eleven dif-
ferent phytoplankton species, including Entomoneis palu-
dosa, Alexandrium catenella, Porphyridium purpurem, Nav-
icula sp., Heterosigma akashiwo, Alexandrium ostenfeldii,
Porphyridium purpureum, Dolichospermum, Phaeodacty-
lum tricornutum M1 and Phaeodactylum tricornutum M?2.
The dataset had 961 distinct microscope specimen photos,
each at a resolution of 3208x2200 pixels. These images were
then further manipulated to create two different datasets, one
consisting of all 961 images being center-cropped and the
other consisting of the 961 images being randomly cropped
ten times, to create a larger dataset of 9610 images. Fur-
thermore, when testing the ProjectedGAN and StyleGANv2
models, each image within the two datasets was flipped on
the x-axis, thereby doubling the dataset to 1922 and 19220
images, respectively. Lastly, the GANSs in this investigation
were trained on two different PCs, one with a single 12GB
Nvidia GeForce GTX TITAN X GPU and the other with two
11GB GeForce RTX 2080 Ti GPUs.

Results & Discussion

Qualitative Comparison. Figure 2 shows a visual compar-
ison of the real algae images and the synthetic generated al-
gae for each GAN model trained in this investigation. Based
on visual inspection, conclusions can be made about each
model’s effectiveness. Figure 2a shows the results from the
ProjectedGAN model. All the generated images are entirely
blank, implying that the GAN had experienced mode col-
lapse. In contrast, the generated images from FastGAN in
Figure 2b are somewhat similar to the real images in Figure



Table 1: Image quality and computational metrics from each GAN model. The SytleGANv2 consistently yields the lowest FID
and KID scores (see bold values) supporting that the SytleGANv2 generated the best synthetic images.

GAN Model | Data Size | Resolution | Iterations | Batch Size | Training Time FID KID GPU model
ProjectedGAN 1922 256x256 1,427,400 64 04d 00h 45m | 113.107 | 0.050 | GTX TITAN X
1922 256x256 1,008,000 64 02d 20h 33m | 226.317 | 0.093 | GTX TITAN X
961 1024x1024 50,000 8 21h33m | 186.690 | 0.163 | GTX TITAN X
FastGAN 9610 1024x1024 25,000 8 10h 46m | 130.201 | 0.090 | GTX TITAN X
9610 1024x1024 50,000 8 16h 00m | 166.062 | 0.083 | GTX TITAN X
9610 3208x2200 50,000 8 08h 02m | 190.040 | 0.115 | 2x RTX 2080 Ti
StyleGANY2 1922 512x512 | 3,000,000 4 02d 14h 58m 29.330 | 0.014 | 2x RTX 2080 Ti
19220 1024x1024 824,000 4 08d 04h 48m 43423 | 0.015 | GTX TITAN X

2d, however, the noise within the generated images is still
apparent. Lastly, Figure 2c shows the results from the Style-
GANV2 model, and it is clear that the generated images are
very similar to the real images.

Image Quality Metric Comparison. Beyond a strictly vi-
sual comparison, both the image quality and computational
metrics can be seen in Table 1. When comparing the image
quality metrics, the StyleGANv2 model yielded the lowest
FID and KID scores by a significant margin compared to the
other GAN models. The lowest FID score from the Style-
GANV2 was 29.330, compared to 130.201 and 113.107 from
the FastGAN and ProjectedGAN, respectively. The lowest
KID score from the StyleGANv2 was 0.014 compared to
0.083 from the FastGAN and 0.050 from the Projected GAN.
Therefore, it can be concluded that the quality of generated
images from the StyleGAN was about four to five times bet-
ter than that of the other tested GANGs.

Computational Metric Comparison. Although the Style-
GANv2 model can generate the highest fidelity images; it
is at the expense of longer training times and more exten-
sive computational requirements. For example, it took over
two days to train the StyleGAN2 model for three million it-
erations using a 512x512 resolution dataset on a dual RTX
2080 Ti and over eight days to train for 824,000 iterations us-
ing a 1024x1024 resolution dataset on a single GTX TITAN
X GPU. Conversely, the FastGAN model trains the fastest
but converges at the highest FID and KID values. Lastly, the
ProjectedGAN model took around two to four days to train
for about 1,000,000 iterations on the GTX GPU; however, in
both instances, the GAN had clearly failed during training.

Investigating Potential GAN Failure

Since the StyleGANv2 yielded the best results in this in-
vestigation, the model was further tested to ensure that im-
ages generated by the GAN are novel. When working with
GAN models trained with a limited number of training im-
ages, the model may potentially memorize images from the
dataset instead of generating novel images. Therefore, we
checked the nearest neighbours of generated images in the
real dataset, nearness being measured in (a) pixel space and
(b) feature space. We provide one example each in Figure
3, the nearest-neighbour analysis of the StyleGANv2 model
shows that the synthetic images are indeed novel.

(a) Pixel space

(b) Feature space

Figure 3: The generated image from StyleGANV2 can be
seen on the top left, and the respective three nearest neigh-
bors can be seen in both (a) the pixel and (b) the feature
space. This illustrates that the SytleGANV2 is not memoriz-
ing the dataset but generating novel images.

Conclusions & Future Works

This work provides a framework for integrating synthetic
datasets into the critical application of HAB monitoring. We
investigate the effectiveness of GANs in generating high-
resolution novel photorealistc synthetic phytoplankton im-
ages from a small dataset of real images. We explored three
SOTA GAN architectures, and found StyleGANV2 to be
quite reliable qualitatively and quantitatively.

Given the outcomes of this paper, the immediate future
work includes (1) automatically labelling the real and gener-
ated datasets, and then (2) training a classifier with the orig-
inal and the combined original and new datasets to evaluate
model performance. Finally, careful consideration must be
taken on how these models are deployed in the field to en-
sure reliable and consistent predictions are provided to end
users, such as aquaculture farmers. This will help mitigate
the impacts of climate change by contributing a key step to-
wards quick and accurate HAB monitoring.
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Appendix

Appendix A : More Generated Images

Figure 4: The first two columns show real images, the last
three columns show images generated by our trained Style-
GANv2 model.

Appendix B : More Nearest Neighbor Comparisons

Figure 5: More examples of Nearest Neighbors : the top left
image (in green) in each box is the generated image, the rest
three images are its nearest neighbours in the real dataset in
pixel space (top row), and in feature space (bottom row).



