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Abstract

Surface ozone is an air pollutant that contributes to hundreds
of thousands of premature deaths annually, primarily by caus-
ing cardiovascular and respiratory disease. Ozone at the sur-
face also has considerable negative impacts on vegetation
and crop yields. Ozone concentrations are affected by envi-
ronmental factors, including temperature, which means that
ozone concentrations are likely to change in future climates,
posing increased risks to human health. This effect is known
as the ozone climate penalty, and recent work suggests that
currently polluted areas are likely to become more polluted
by ozone in future climates. In light of recent stricter WHO
regulations on surface ozone concentrations, we aim to build
a predictive data-driven model for recent ozone concentra-
tions, as a step towards more accurate ozone forecasting tools,
which could be used to make predictions of ozone concen-
trations in future climates. We use observational station data
from three European countries to train a transformer-based
model to make predictions of daily maximum 8-hour ozone.

Introduction
Ozone at the surface is a secondary air pollutant which is
not directly emitted by anthropogenic activities, but formed
in the troposphere via a series of photochemical reactions
(Finlayson-Pitts and Pitts Jr 1997). Ozone air pollution is
estimated to contribute to between 365,000 and 1,100,000
premature deaths worldwide annually (Murray et al. 2020;
Anenberg et al. 2010; Malley et al. 2017; Silva et al. 2013),
primarily by causing cardiovascular and respiratory diseases
(Kim, Kim, and Kim 2020; Filippidou and Koukouliata
2011; Sun et al. 2022). The impacts of ozone pollution have
been linked to both long and short-term exposure to high
ozone concentrations (Bell et al. 2004; Nuvolone, Petri, and
Voller 2018).

Ozone air pollution is both a global and local issue. Back-
ground levels of ozone in remote areas routinely exceed
guidelines set by the WHO, while local ozone concentra-
tions can far exceed these guidelines. The WHO estimates
that 99% of the world’s population live in areas where ozone
concentrations routinely exceed guidelines (WHO and ECE
2021).
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Due to the phytotoxicity of ozone, the negative effects
of ozone air pollution on vegetation, ecosystems and crop
yields are significant (Fowler et al. 2009; Emberson et al.
2001). Ozone impacts vegetation by oxidative damage of
cells (Ainsworth 2017). This damage leads both to consid-
erable economic losses from reduced crop yields (Burney
and Ramanathan 2014), and the potential for increased cli-
mate change, as damaged vegetation has a reduced capacity
to sequester carbon dioxide from the atmosphere (Ainsworth
et al. 2012; Sitch et al. 2007).

Effects of climate change on ozone
Derived from the key processes controlling ozone, in-situ
photochemical production and transport, we observe a num-
ber of relationships between ozone and other variables, such
as temperature (Laña et al. 2016) and meteorology. The con-
tribution of each of these factors makes accurate prediction
of ozone with numerical forward chemical transport models
(CTMs) difficult. For example, large scale meteorological
phenomena affect both temperatures and transport. The rel-
ative contributions to ozone concentrations from the changes
in temperature compared to the changes in transport are dif-
ficult to ascertain, particularly at extrema.

Furthermore, increasing temperatures under climate
change are also expected to affect ozone concentrations dif-
ferently across regions (Schnell et al. 2016). This effect is
known as the ozone climate penalty (Rasmussen et al. 2013).
It has been suggested that increases in temperatures will lead
to increases in ozone concentrations in regions polluted with
NOx, while in less polluted regions ozone is expected to de-
crease (Bloomer et al. 2009; Rasmussen et al. 2013). Recent
studies have suggested this effect is significant in tropical,
forested regions (Brown et al. 2022).

With higher temperatures we may expect increased con-
centrations of chemical ozone precursors in the atmo-
sphere, firstly by thermal decomposition of peroxyacyl ni-
trate (PAN), a reservoir for NOx (Beine et al. 1997), which
may stifle the impact of projected NOx emission cuts. There
is also evidence that there will be increased NOx emis-
sions from soil (Hall, Matson, and Roth 1996). Emissions
of VOCs (also ozone precursors, e.g. isoprene) from vegeta-
tion may also increase (Lathiere et al. 2005; Constable et al.
1999) due to changes in stomatal conductance with temper-
ature (Niinemets and Reichstein 2003).



Considerable damage to human health from ozone comes
from short-term exposure to high ozone levels. These ex-
treme ozone episodes are often accompanied by high tem-
peratures, leading to a combination of risks that further in-
crease mortality (Filleul et al. 2006; Dear et al. 2005). It
is projected that these compound events will increase un-
der climate change leading to increases in the global risk
to human health, despite projected emissions controls (Lei,
Wuebbles, and Liang 2012). In particular, compound meteo-
rological events, where both high temperatures and stagnant
conditions lead to high ozone concentrations, are likely to
become more common under climate change (Zhang et al.
2018). Predicting and understanding these extreme ozone
events under climate change is important to accurately quan-
tify the risks of ozone pollution to human and ecosystem
health (Schnell et al. 2014).

Machine learning for ozone prediction
Machine learning methods are increasingly being deployed
to make short-term predictions of ozone concentrations. As
discussed previously, ozone concentrations are controlled
by physical and chemical processes. These processes act
on varying timescales. For example, extended periods of
hot weather and stagnancy affect ozone concentrations, and
therefore an ML approach that accounts for these tempo-
ral relationships is likely to be more skillful in predicting
ozone compared to standard methods. Recently, both con-
volutional and recurrent neural networks have been imple-
mented to make short-term predictions of ozone (Kleinert,
Leufen, and Schultz 2021; Eslami et al. 2020; Biancofiore
et al. 2015) (Table 1). However, transformer architectures
have been less widely deployed (Chen et al. 2022). Trans-
formers have been shown to be highly effective in sequential
domains such as natural language processing (Brown et al.
2020; Ji et al. 2021), in part due to their ability to attend
to long-term dependencies in the data. A transformer-based
model may provide an intrinsic advantage over standard ML
models and convolutional and recurrent neural networks that
have been previously explored to predict ozone concentra-
tions.

Therefore, in this work we implement a transformer-based
temporal machine learning (ML) model to make short-
term predictions of ozone, to evaluate the capacity of a
transformer-based architecture to predict ozone, particularly
for extreme concentrations. This is a step towards ML mod-
els capable of forecasting ozone accurately now, and in fu-
ture climates.

Data selection and pre-processing
The TOAR dataset (Schultz et al. 2017) was selected as a
suitable exploratory dataset for our predictive model, due to
its global coverage and high fidelity and quantity of data,
with daily measurements stretching back to the 1980s in
some locations. The dataset is hosted by the Julich Super-
computing Centre, and provides 2.6 billion individual obser-
vations of ozone concentrations. By building a scalable ap-
proach with governmental observations we expect that the
models would improve as more high fidelity observations

are made.
As well as providing data on chemical species such as

ozone and NOx, this dataset also provides environmental
variables on a daily scale, drawn from ERA5 reanalysis data
(Hersbach et al. 2020), and landcover attributes for each sta-
tion. This allows us to build supervised ML models with key
ozone predictors affected by climate change.

We scraped data from the TOAR database for three Euro-
pean countries: the UK, France and Italy. These were cho-
sen to represent three different environments, in order to test
whether a single model could be trained to make accurate
predictions across countries. Data from all months of the
year and from both urban and rural stations were included in
our dataset. This dataset therefore provides a larger sample
of different environments than have been studied in previous
work (Kleinert, Leufen, and Schultz 2021; Biancofiore et al.
2015), with data from 1997 to 2013, from 1012 individual
stations. Our final dataset contains more than 2 million indi-
vidual days of data.

Due to the large size and relative completeness of our
dataset, imputing missing values was deemed unnecessary.
By simply removing missing data we removed the risk of
bias from data imputation, although future work will exam-
ine the impact of replacing missing values. We scaled our
features with min-max normalisation (Jayalakshmi and San-
thakumaran 2011).

The data include both static and dynamic features. The
static features relate to characteristics of a particular station,
such as the local population density, while the dynamic fea-
tures are environmental or chemical variables which change
through time, such as temperature. Some static features are
given as strings in the TOAR dataset, such as station type
(e.g. ’background’). These static categorical features were
converted to numerical features.

To train, validate and test our models, we split the data
temporally, with the penultimate year used for validation,
the final year used for testing and the remainder for training.
We used the previous 21 days of observations of ozone and
covariates to make ozone predictions up to 4 days ahead.

Predictive results
In order to provide a complement to existing numeri-
cal CTMs for ozone prediction, we deploy a state-of-the-
art temporal deep learning architecture, the temporal fu-
sion transformer (TFT) (Lim et al. 2021). Transformers
have been used widely and successfully in natural lan-
guage processing and on other sequential data (Brown et al.
2020; Ji et al. 2021). The TFT combines gated residual
networks, variable selection networks, an LSTM encoder-
decoder layer, and multi-head attention.

The TFT is able to ingest both static and dynamic fea-
tures to make predictions of ozone. When making predic-
tions operationally, it is important to quantify the uncertainty
in predictions. In order to extract prediction intervals from
the TFT, we used a quantile loss function.

Despite being a relatively computationally expensive ML
method, training the TFT on our dataset took 2 hours us-
ing 2 Tesla V100 GPUs. Once trained, making predictions



across 1012 individual stations took 25 µs. This illustrates
the vast speed-ups compared to CTMs possible with ML
models. Hyperparameters were optimised manually on the
validation data.

Performance of the TFT
When predicting ozone concentrations using concurrently
observed covariate data (infilling a dataset, or forecasting
ozone with a meteorological forecast), the model was skill-
ful (MAE = 4.1 ppb, R2 = 0.86, RMSE = 5.6 ppb, r = 0.92).
These predictions rely on previous ozone observations and
concurrent covariate data, and therefore these predictions are
suitable for making short-term future predictions with me-
teorological forecasts as input, and infilling missing ozone
values in historical data. The TFT was also used to make
short-term future predictions without concurrent covariates,
up to four days ahead, which also yielded good performance
(MAE = 5.7 ppb, R2 = 0.73, RMSE = 7.8 ppb, r = 0.82)
which was 20% more accurate in terms of MAE compared
to a persistence model. While we cannot make direct com-
parisons due to differing test datasets, the skill of our method
compares favourably to other ML methods and numerical air
quality forecasting models such as AQUM (Neal et al. 2014;
Im et al. 2015), especially given the size and variety of our
test dataset (Table 1).

A correlation plot of TFT predictions on the test set, us-
ing concurrent covariates, against observations, is given in
Figure 1. The model was more accurate than other standard
ML approaches such as random forests and LSTMs, and ap-
proximately 40% more accurate compared to a persistence
model in terms of MAE.

Figure 1: Correlation plot of predictions against observa-
tions on the test data for forecasting ozone concentrations
with the TFT using concurrent covariates. Overall predic-
tion skill was good (MAE = 4.1 ppb, R2 = 0.86).

We can further visualise the skill of the TFT by looking
at predictions and observations at individual stations in our
dataset, as illustrated in Figure 2. Figure 2 also shows days
from the past which the attention mechanism in the model
used to inform the predictions, shown by the grey line. The
model pays attention to previous high ozone days to make
future predictions of high ozone concentrations.

Figure 2: Example predictions of the TFT at an individual
station in the UK, accompanied by prediction intervals de-
rived from the quantile predictions of the model. The 21
days of previous ozone is also shown with a negative time in-
dex. The plot also shows the attention that the model pays to
each particular day of data from the past, illustrating which
information the model uses to make predictions.

Figure 2 also illustrates the prediction intervals generated
by the TFT, which are a great benefit to evaluate trust in the
model. The uncertainty estimates correlate reasonably well
with the accuracy of predictions at different stations.

We also tested whether the TFT was able to make skillful
predictions of ozone concentrations at both urban and rural
stations. The most comparable recent work to ours, Kleinert
et al. (Kleinert, Leufen, and Schultz 2021), only trained and
evaluated their model on rural stations, and therefore it is
unclear whether a single deep learning model is able to gen-
eralise across these two distinct environments. Our model
performed similarly on urban and rural data (MAE = 4.2,
R2 = 0.86 and MAE = 4.0, R2 = 0.85 respectively), which
suggests that architectures of this type are able to generalise
across the two environments given sufficient training data.

Predicting extreme ozone

Ozone concentrations in Europe tend to peak in the spring
and summer months, typically between April and June
(Lewis et al. 2021). Making accurate forecasts of high ozone
is important, as these high ozone concentrations pose a great
threat to health, and are likely to occur more frequently in
future climates. We therefore evaluated the skill of the TFT
using concurrent covariates during these high ozone periods.
We found that the TFT was able to make reasonably skillful
forecasts on spring and summertime ozone concentrations
(MAE = 6.2 ppb, R2 = 0.77). However, the performance
was poor compared to forecasting on data from the rest of
the year (MAE = 3.9 ppb, R2 = 0.87). The performance is
illustrated in Figure 3.



Method (and paper) r (Pearson) RMSE / ppb
Persistence 0.42 10.16
(Ivatt and Evans 2020), Geos-CHEM 0.48 16.2
Ridge regression 0.50 9.59
(Neal et al. 2014), AQUM 0.64 20.8
Random forest 0.68 7.51
(Debry and Mallet 2014), DRR 0.70 6.3
(Neal et al. 2014), bias-corrected AQUM 0.76 16.4
(Sayeed et al. 2020), CNN 0.77 8.8
(Eslami et al. 2020), CNN 0.79 12.0
(Ivatt and Evans 2020), bias-corrected Geos-CHEM 0.84 7.5
LSTM 0.85 6.11
(Biancofiore et al. 2015), RNN 0.86 12.5
(Chen et al. 2022), CNN-Transformer NA 7.8
TFT 0.90 5.6

Table 1: The relative performance of different ML and numerical approaches to ozone forecasting. Methods in italics were
evaluated on our dataset, while the other methods used different datasets. The difficulty of comparing methods evaluated on
different datasets is shown by the varying RMSE values.

Figure 3: Comparison of the TFT when making fore-
casts with concurrent covariates during the spring/summer
and the non-spring/summer months. When predicting on
spring/summertime ozone, the performance was consider-
ably worse (MAE = 6.2 ppb and R2 = 0.77) compared to
predicting during the rest of the year (MAE = 3.9 ppb and
R2 = 0.87). The root cause of this appears to be the under-
prediction of ozone at high values.

What is the TFT paying attention to?

We extracted feature importances, derived from the weights
of attention mechanism in our model, to examine which dy-
namic features are most important when making predictions
with our data. These importances are largely in line with
what is expected physically: both temperature and planetary
boundary layer height are key variables. Interestingly, the
concentration of chemical species are less important, which
agrees somewhat with the findings of model-based studies
(Porter and Heald 2019). However, our data does not con-
tain all the variables available in model-based studies.

Figure 4: The variable importances of the TFT when mak-
ing infilling predictions, derived from the weights of the at-
tention mechanism. These are largely in line with expected
physical and chemical relationships.

Conclusions
Ozone is difficult to model with existing numerical methods.
A transformer-based ML model, the TFT, makes skillful pre-
dictions of ozone concentrations at stations across Europe.
The model is able to make accurate predictions across en-
vironments, and performs reasonably well when predicting
extrema. The TFT pays attention to relevant physical pro-
cesses driving the ozone concentrations. This model pro-
vides a promising, computationally cheap method to make
short-term forecasts of ozone concentrations, which could
be deployed to make accurate forecasts in future climates.
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Appendices
Features from the TOAR dataset
Table 2 describes the data used as features for the machine
learning model. The features are split into static and dy-
namic features. Static features describe the characteristics
of a particular station, while dynamic features vary through
time.

Model hyperparameters
Table 3 details the hyperparameters used for the TFT model.
These hyperparameters were selected with manual optimi-
sation, however more principled methods such a random
search or Bayesian optimisation will be implemented in fu-
ture work.



Variable Name Description
Static
station type Characterisation of site, e.g. ”background”, ”industrial”, ”traffic”.
landcover The dominant IGBP landcover classification at the station location extracted from the

MODIS MCD12C1 dataset (original resolution: 0.05 degrees).
toar category A station classification for the Tropospheric Ozone Assessment Report based on the

station proxy data that are stored in the database. One of unclassified, low elevation
rural, high elevation rural or urban.

pop density Year 2010 human population per square km from CIESIN GPW v3 (original horizon-
tal resolution: 2.5 arc minutes).

max 5km pop density Maximum population density in a radius of 5 km around the station location.
max 25km pop density Maximum population density in a radius of 25 km around the station location.
nightlight 1km Year 2013 Nighttime lights brightness values from NOAA DMSP (original horizontal

resolution: 0.925 km).
nightlight max 25km Year 2013 Nighttime lights brightness values (original horizontal resolution: 5 km).
alt Altitude of station (in m above sea level). Best estimate of the station altitude, which

frequently uses the elevation from Google Earth.
station etopo alt Terrain elevation at the station location from the 1 km resolution ETOPO1 dataset.
nox emi Year 2010 NOx emissions from EDGAR HTAP inventory V2 in units of g m−2 yr−1

(original resolution: 0.1 degrees)
omi nox Average 2011-2015 tropospheric NO2 columns from OMI at 0.1 degree resolution

(Env. Canada) in units of 1015 molecules cm−2.
Dynamic
o3 Ozone concentration, daily maximum 8-hour average statistics according to the using

the EU definition of the daily 8-hour window starting from 17 h of the previous day.
Measured at the station, with UV absorption.

cloudcover Daily average cloud cover from ERA5 reanalysis for the grid cell containing a partic-
ular station.

relhum Daily average relative humidity from ERA5 reanalysis for the grid cell containing a
particular station.

press Daily average pressure from ERA5 reanalysis for the grid cell containing a particular
station.

temp Daily average temperature from ERA5 reanalysis for the grid cell containing a partic-
ular station.

v Daily average meridional wind speed from ERA5 reanalysis for the grid cell contain-
ing a particular station.

u Daily average zonal wind speed from ERA5 reanalysis for the grid cell containing a
particular station.

pblheight Daily average planetary boundary layer height from ERA5 reanalysis for the grid cell
containing a particular station.

no2 NO2 concentration, as the daily maximum 8-hour average statistics according to the
using the EU definition of the daily 8-hour window starting from 17 h of the previous
day. Measured at the station, with chemiluminescence.

Table 2: Table giving the relevant data extracted from the TOAR database.

Model Hyperparameter value
TFT
attention head size 4
dropout 0.2
hidden continuous size 32
hidden size 64
learning rate 0.0135
lstm layers 4
optimizer ranger

Table 3: Table giving the hyperparameters for the final TFT used for model evaluation.


