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Abstract

Comprehensive global cooperation is essential to limit global
temperature increases while continuing economic develop-
ment, e.g., reducing severe inequality or achieving long-term
economic growth. Achieving long-term cooperation on climate
change mitigation with n strategic agents poses a complex
game-theoretic problem. For example, agents may negotiate
and reach climate agreements, but there is no central authority
to enforce adherence to those agreements. Hence, it is critical
to design negotiation and agreement frameworks that foster
cooperation, allow all agents to meet their individual policy
objectives, and incentivize long-term adherence. This is an
interdisciplinary challenge that calls for collaboration between
researchers in machine learning, economics, climate science,
law, policy, ethics, and other fields. In particular, we argue that
machine learning is a critical tool to address the complexity
of this domain. To facilitate this research, here we introduce
RICE-N, a multi-region integrated assessment model that sim-
ulates the global climate and economy, and which can be
used to design and evaluate the strategic outcomes for differ-
ent negotiation and agreement frameworks. We also describe
how to use multi-agent reinforcement learning to train ratio-
nal agents using RICE-N. This framework underpins AI for
Global Climate Cooperation, a working group collaboration
and competition on climate negotiation and agreement design.
Here, we invite the scientific community to design and evalu-
ate their solutions using RICE-N, machine learning, economic
intuition, and other domain knowledge. More information can
be found on www.ai4climatecoop.org.

1 Introduction

The latest IPCC report (Pörtner et al. 2022) warns that it
is “now or never” to stave off a climate disaster. Ecosys-
tems are drastically changing: the Amazon rainforest is re-
ceding (Lovejoy and Nobre 2018) and polar ice sheets are
melting (Boers and Rypdal 2021; DeConto et al. 2021). Ex-
treme weather events are clear warning signs too, such as
the recent uptick in coastal flooding and forest fires. These
developments are increasingly being attributed to climate
change and driving towards a system-wide tipping point.

*Work done while at Salesforce.

Climate change is a global phenomenon, and it affects all.
In response, private and public financing have driven techno-
logical innovation (e.g., in renewable energy) and commu-
nity campaigns to drive systemic change. However, climate
change mitigation investments vary in size and type across
nations and global regions, due to various social and eco-
nomic factors. For example, developing nations may need to
focus first on the basic needs of their citizens, while devel-
oped nations have more funding and opportunities to prepare
for the adverse impacts of climate change. Hence, climate
change presents a classic case of “tragedy of the commons”,
where individual agents who pursue their own self-interest
may lead to a destructive outcome for everyone.

As such, achieving and maintaining global cooperation is
essential to achieve the Paris Agreement’s long-term goal of
limiting global temperature rise to well below 2◦C above
pre-industrial levels (DeConto et al. 2021). At the same
time, it is important to maintain economic development, e.g.,
achieving growth and reducing inequality. For example, in-
ternational trade treaties, foreign investment, and technol-
ogy transfer may enable developing countries to meet net-
zero commitments, while contributing to global economic
growth. Such cooperation may be implemented through cli-
mate clubs (Nordhaus 2015), which may overcome barriers
to taking action on climate change.

From a modeling point of view, achieving and maintaining
global cooperation poses a complex game-theoretic prob-
lem involving cooperation, communication, and competition.
This game can be modeled with n strategic agents, each agent
representing a region or nation. Each agent is (boundedly)
rational and implements policies to achieve its own socio-
economic and climate objectives, which may be at odds with
the objectives of the other agents. Agents interact through
trade, diplomacy, or foreign aid and investments. Cooperation
may happen through mutual negotiation and agreements.

However, a crucial issue is that there is no central entity
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to enforce cooperation or adherence to signed agreements
in the real world. For these reasons, it is critical to design
multilateral negotiations and agreements that best foster con-
tinuing cooperation towards mitigating climate change while
allowing all parties to meet their individual policy objectives.

Such game-theoretic problems pose unsolved technical
challenges. For instance, a key analysis in the 2022 IPCC
report (Pörtner et al. 2022) predicts climate change under five
different so-called Shared Socio-Economic Pathways (SSP).
Each SSP uses a manually defined set of climate policies
for each global region. However, a key limitation is that it is
unclear whether these policies would be executed by rational
actors, and thus how likely these scenarios are to materialize
or how robust these scenarios are to agents who may change
their behavior over time.

Contributions. In this paper, we propose a conceptual and
practical framework to overcome these limitations and pro-
vide a strategic analysis of rational agent behaviors and their
impact on climate change. We also introduce AI for Global
Climate Cooperation, a community initiative to foster in-
terdisciplinary research and real-world impact in this area.
Specifically, we present the following:

• we argue that machine learning (ML) offers an attractive
framework to analyze the strategic aspects of real world
climate negotiations and agreements;

• we argue this research requires combining both existing
and new tools: calibrated agent-based climate-economic
simulations, multi-agent machine learning, deep reinforce-
ment learning (RL), game theory, and integrating data;

• we urge the community to pursue interdisciplinary re-
search, e.g., between economics, climate science, ma-
chine learning and other fields to understand the impact
of strategic behavior on climate change;

• we introduce RICE-N, a calibrated climate-economic
simulation that can model negotiations, agreements, and
strategic behaviors between multiple regions;

• we describe how to use multi-agent reinforcement learn-
ing (MARL) to train rational agents in RICE-N;

• we introduce a working group collaboration to build mo-
mentum and to have actual policy impact through peer-
reviewed publications authored by groups and policy
briefs and communication with policymakers; and

• as a first step, we are organizing a competition to evaluate
solutions, both through quantitative results and scientific
assessment by a diverse, interdisciplinary expert jury. The
objective of this competition is to design contracts and
protocols that foster global climate cooperation, using a
mix of machine learning tools, economic intuition, and do-
main knowledge. Participants will evaluate their solutions
using RICE-N and a web platform run by the group.

For up-to-date information, see www.ai4climatecoop.org.

2 Related Work
Integrated assessment models. Climate-economic simu-
lations, such as RICE-N, are known as Integrated Assess-
ment Models (IAM). IAMs are commonly used in climate

change policy analysis to simulate future scenarios, based
on a joint climate-economic dynamics model that quantifies
the effect of economic activity and CO2 emissions on global
temperatures and long-term economic development. A pio-
neering example is the Dynamic Integrated model of Climate
and Economy (DICE) (Nordhaus 2007), which models the
links among climate and economic factors, e.g., population
growth, technological change, CO2 emissions and concentra-
tions, global temperatures, and economic damages. Notably,
DICE models a single global region. The Regional Integrated
Climate-Economy (RICE) model generalizes this to multiple
heterogeneous regions, modeling heterogeneous population
growth, climate change mitigation investments, and other fac-
tors. The RICE model was further extended to include trade
and tariffs (Lessmann, Marschinski, and Edenhofer 2009).

Key limitations of IAMs include a lack of modeling
decision-making under uncertainty, distributional analysis,
technological change, and realistic economic damage func-
tions (Farmer et al. 2015). Moreover, cooperation, commu-
nication, and competition between regions can significantly
influence regional policies and their (long-term) effects, but
are under-explored in IAMs. Our proposed framework, based
on RICE-N, machine learning, and other domains, addresses
the latter shortcoming and is inspired by agent-based mod-
eling (Bonabeau 2002) as a bottom-up modeling frame-
work and advances in MARL to find well-performing poli-
cies (Zheng et al. 2022) and to train human-level strategic
agents (Silver et al. 2016; Vinyals et al. 2019).

Multi-agent aspects of climate change. Previous work
has studied the connection between political economy, nego-
tiations, and climate change. Empirical work has found that
previous climate summits have had inconsistent or too little
impact (Chan et al. 2022; Bakaki 2022). The impact of social
dynamics has been studied in a stylized climate-social model,
finding that public perception and institutional responsive-
ness are important to explain variations in emissions (Moore
et al. 2022). Coalition-forming under climate negotiations
and agreements have also been studied from a game-theory
perspective (Zenker 2019). IAMs have also been used to
study the impact of political bargaining on the economic bur-
den required to meet climate targets (Rochedo et al. 2018).
However, to the best of our knowledge, no work has analyzed
the game-theoretic aspects of climate cooperation using ma-
chine learning and calibrated IAMs.

Strategic behavior and climate change. Game theory has
long studied the collective behavior of self-interested agents,
e.g., the tragedy of the commons (Hardin 1968), negotia-
tion and agreements of agents with conflicting and common
goals (Schelling 1980). Certain works have analyzed interna-
tional negotiations on climate collaboration and agreements
regarding economic activity and climate efforts, e.g., im-
posing tariffs on countries that do not mitigate sufficiently.
Climate negotiations have been studied using mathematical
games, e.g., coordination games or prisoner’s dilemmas (De-
Canio and Fremstad 2013). However, the reliability of such
simplified models for real-world policy has been called into
question. In particular, these games lack (i) a multilateral,
rather than bilateral, setting, (ii) strategic behavior from

www.ai4climatecoop.org


agents with multiple, possibly conflicting, goals, (iii) evolv-
ing climate dynamics and changing agent behavior that lead
to non-equilibrum outcomes, and (iv) heterogeneity among
agents (Madani 2013).

Subsequent work has gone beyond equilibrium analysis by
modeling climate negotiations as a bargaining game in which
agents learn, albeit in a highly simplified manner (Smead
et al. 2014). Climate scenarios could be studied through the
emergence of climate mitigation from these games with learn-
ing, in which regions can cooperate or compete (Greeven
et al. 2016). Furthermore, other work has studied the dif-
ficulty of long term climate collaboration (Carney 2015),
as well as potential mechanisms for overcoming associated
issues (Nordhaus 2015).

Multi-agent reinforcement learning. MARL has emerged
in recent years as an attractive framework that studies how
to train rational agents that may communicate, cooperate,
or compete. This is a rich area of research that intersects
machine learning with game theory, economics, and other
domains (Shoham and Leyton-Brown 2008). Games can be
classified as cooperative, competitive, or a mixture of both.
For instance, in fully cooperative games, agents learn to work
together, e.g., to lower the carbon power consumption of
heating, ventilation and air conditioning (HVAC) systems
(Mai, Zhang, and Lesage-Landry 2021; Hanumaiah and Genc
2021; Yu et al. 2020), or in the game of Hanabi (Yu et al.
2021). On the other hand, in a competitive game, agents may
need to find strategies to defeat opponents, e.g., in Diplomacy
(Paquette et al. 2019) and Go (Schrittwieser et al. 2020).
However, many games are neither purely competitive nor
purely cooperative. Hence, multi-agent games can be simple
to define, yet it may be hard to find optimal agent strategies
using learning-based methods, e.g., in the iterative prisoner’s
dilemma and coin games (Lerer and Peysakhovich 2017;
Foerster et al. 2017).

Recent work has explored the link between MARL and
negotiation (Cao et al. 2018), as well as cooperation in so-
cial dilemmas and collaboration on climate change (Jaques
et al. 2019; Chelarescu 2021; Le Gléau et al. 2022). As
such, MARL is an attractive framework to analyze climate
outcomes taking strategic behavior into account. However,
previous work has largely considered highly stylized envi-
ronments and has not yet been applied to rich calibrated
climate-economic simulations; our work fills this gap.

3 The RICE-N Integrated Assessment Model
We introduce RICE-N, an IAM that further augments RICE
with a framework for negotiation protocols, and also includes
international trade and tariffs, following Lessmann, Marschin-
ski, and Edenhofer (2009)). As such, RICE-N shares climate,
economic and social characteristics with the real world.

In RICE-N, there are n regions, each modeled as an inde-
pendent decision-making agent. Regions interact with each
other and the environment through their actions: setting a sav-
ings rate, mitigation rate, trades and tariffs, and negotiation
actions, for each time step (e.g., every 5 years).

RICE-N has two main components: negotiation and
climate-economic activity, see Figure 1. The activity com-

ponent simulates the physical actions of the agents and the
resulting evolution of the environment. The negotiation com-
ponent simulates communication between regions, allowing
them to influence each other’s behaviors and form agree-
ments. Agreements may in turn adjust the available actions
for each region during the activity stage.

Each simulation episode consists of H steps, each step rep-
resenting ∆ years (e.g, ∆ = 5). Thus, the simulation spans a
period of H ×∆ simulation-years. At every step, the simu-
lation goes through the negotiation stages, and agreements
are formed within the regions. The simulation then enters
the activity stage where each region takes actions that are
affected by the agreements formed during the negotiation
stages.

For the public version of the simulation, we have fitted the
structural parameters of the simulation to real data. However,
the regions and their characteristics in the public version are
not an identical one-to-one representation of the real world.
Moreover, the regions are fictitious and do not represent real-
world nations.

3.1 Base Dynamics
We now describe the climate-economic and trade dynamics
of the simulation that are based on existing work.

Climate-economic dynamics overview. The state of the
world is characterized by global variables such as the con-
centration of CO2 levels in the Earth’s atmosphere, and the
average global temperature, as well as region-specific vari-
ables such as population, capital, technology level, carbon
intensity of economic activity, and balance of trade (see Ta-
ble 2 in Appendix J).

The climate dynamics model how CO2 levels in the atmo-
sphere impacts global temperatures. The economic dynamics
model how technology levels, capital, population, and gross
domestic production evolve. Notably, the climate dynamics
impact the economic dynamics through a damage function
which describes how higher temperatures lead to losses in
capital.

These dynamics depend on savings and mitigation rates
set by each agent, e.g., agents may choose to invest more
in climate change mitigation, but this may lower economic
productivity in the short-term.1 As global CO2 levels and
temperatures affect all agents, these dynamics mean the de-
cisions of each agent affect the climate-economic outcomes
for other agents too.

The activity component encapsulates these dynamics. At
every step, it does the following: The gross output production
for each region is computed based on the state of the region,
in particular, its capital investment, labor (or population),
and technology factor. The net economic output is the gross
output production reduced by climate damages from rising

1In economic terms, variables such as capital, balance of trade,
carbon mass, and global temperature depend on the agents’ actions
and are called endogenous variables. On the other hand, variables
such as population, technology level, carbon intensity of economic
activity are called exogenous, i.e., their values do not depend on the
agent actions. Note that the values of endogenous variables can vary
across steps in a predetermined manner.



Figure 1: Schematic overview of observations, actions, and components in RICE-N. Each region (agent) uses a policy model
to negotiate and make climate, economic, and trade decisions. For clarity, we show the flow of information and actions for a
single agent only. The details of the negotiation protocol are up to competitors to implement. At a high-level, at each timestep,
each policy first receives an observation of the negotiation and world state and decides how to negotiate. Negotiation may proceed
for several iterations (at the same timestep). The outcome of all negotiations are agreements (or lack thereof), which may be
between two or more agents. In particular, an agreement may influence the remaining actions that an agent can take in the climate
and economic domains. For the same timestep, each agent then makes decisions with respect to the climate, economy, and trade.

global temperature, and the cost of efforts towards mitigation
by this region. The region consumes domestic goods equal
to the quantity of the net economic output that is left after
capital investment and export. It also consumes foreign goods
from imports. The consumption utility for each region from
consuming domestic and foreign goods is computed using
the Armington elasticity assumption that has become stan-
dard in international computable general equilibrium models
(Armington 1969). This gives the reward corresponding to
each region in every step. Please refer to Appendix A.1 and
Table 3 in Appendix J for more details.

International trade and tariffs. RICE-N features interna-
tional trade to exchange and transfer goods between agents,
following (Lessmann, Marschinski, and Edenhofer 2009).
Here, agents are modelled to seek diversity in their consump-
tion according to the Armington assumption (Armington
1969), so they want to consume goods produced by other
agents and are willing to export some of their own goods in
exchange. Each agent specifies how many goods they would
like to import and sees its orders (partially) filled, depending
on the other agents’ willingness to export.

In addition, agents can choose to impose import tariffs
to restrict trading. Import tariffs restrict the consumption of

the imported goods that they are applied to, which implicitly
increases their prices. These price increases make imported
goods without import tariffs more attractive. Therefore, trade
and tariffs force agents to engage with other regions and be
strategic, and hence may incentivize negotiations and signing
agreements. Please refer to Appendix A.2 for more details.

4 The Negotiation Component
A key objective of our working group collaboration and com-
petition is to test different negotiation protocols that affect
the actions during the activity stage and lead to socially
better outcomes. As such, the negotiation component can
include different stages of communication and the rules to
form agreements between the regions. Note that RICE-N can
work with an empty negotiation component, and indeed these
provide important baselines for performance evaluation.

For a detailed exposition and formal details on negotiation
protocols and agreements, see Section K in the Appendix.

Binding agreements via action masks. In the base imple-
mentation of RICE-N, we allow the negotiated agreements
to control the range of actions allowed for the regions. The
effect of an agreement can then be encoded in the form of



action masks that controls the allowed action space during
the activity stage. For example, an agreement could state that
a given region should implement a minimum of 20% mitiga-
tion rate. Then the action mask only allows setting mitigation
rates above that level for this region.

Hence, it is important to ensure that the negotiation proto-
col provides each region with a way to reject any agreement
that restricts its actions. For example, it shouldn’t happen
that a certain region is forced to implement a mitigation rate
that it did not agree to (Mitchell 2003). Even if the agents
are provided a choice to accept or reject an agreement, action
masks could be implemented by the simulation designer to
artificially restrict actions to make an agreed-upon agreement
fully-binding. However, this is less realistic.

Non-binding agreements. Alternatively, an implementa-
tion can include agent observations that allow regions to
check if the agreements were followed or not and learn to pun-
ish the regions that did not comply with them. Alternatively,
a reputation system could be built based on the observations
corresponding to agents complying with their agreements,
with agents using these reputation scores to engage with each
other for future agreements. Such implementations would
be more realistic as compared to an implementation based
on action masks because they do not assume any agreement
enforcing entity.

Properties of negotiation protocols. A wide range of pro-
tocols can be implemented as part of the negotiation com-
ponent. A key goal is to design a negotiation protocol so
that agents may not only maximize their own utility but also
care about the collective goal: mitigating global temperature
rise. From a theoretical point of view, attractive properties of
negotiation protocols could be:

• incentive-compatible: every agent can achieve the best
outcome for themselves by acting according to their true
preferences (Pavan, Segal, and Toikka 2014),

• self-enforcing: no external body or agent is required to
enforce other agents to participate in negotiations and
adhere to agreements (Telser 1980),

• strategy-proof : without information about other agents’
actions, agents do at least as well by being truthful (Li
2017).

We now discuss several example negotiation protocols.

4.1 No Negotiations
Let us begin with the most simple negotiation protocol, the
one with no negotiation. In this case, the simulation runs
through the activity component at each step. Each region
chooses its actions from the entire feasible range of actions
without any restriction, since no agreements are formed. Each
region aims to optimize for its individual rewards and thus
this is the classic case of tragedy of the commons.

4.2 Unilateral Contracts
The negotiation component could include various constraints
that do not require negotiation. For example, if two regions
a and b enact mitigation rates µa and µb such that µa > µb,

then an agreement could entail that region a imposes a tariff
τa = α(µa − µb) on region b where α is a “mitigation
correction” coefficient. This is a simple mechanism through
which a region a could incentivize regions b to mitigate more.

4.3 Bilateral Negotiations on Mitigation Rates
The negotiation component can be composed of multiple
stages of observations and actions that ultimately lead to
agreements within the regions. Consider the following proto-
col: For each ordered pair of regions (i, j), region i makes a
proposal (µ̂i, µ̂j) and region j decides whether to accept the
proposal or not. The above proposal means that, if accepted
by region j, then an agreement is formed between region i
and region j that says, region i will choose a mitigation rate
µi at least as large as µ̂i and region j will choose a mitigation
rate µj at least as large as µ̂j as their inputs to the activity
component.

Thus, during negotiation, there will be n(n− 1) total pro-
posals and decisions regarding their acceptance. After nego-
tiation, each region i will select its mitigation rate µi that is
greater than or equal to all of the mitigation rates µ̂i in the
accepted proposals that region i was a part of.

This negotiation protocol can be implemented in two
stages:

• Proposal stage: At this stage, each region i makes a pro-
posal to every other region j.
Observations: state observations for agent i.
Actions: Proposals (µ̂i, µ̂j) for every other region j.

• Evaluation stage: At this stage, each region observes the
proposals made to it in the preceding stage and takes an
action of accepting or rejecting each of the proposals.
Observations: state observations for agent i, incoming and
outgoing proposals for agent i.
Actions: Accept or reject each received proposal.

At the end of the evaluation stage, the minimum required
mitigation rate is computed for each region and the corre-
sponding action mask is set. This ensures that the regions
choose actions for the activity component that comply with
the agreements formed in the negotiation component. Instead
of using action masks, the implementation can allow agents
to take any action, but include these actions as observations
for the other agents so that they can learn to punish any agree-
ment violations. For example, regions can increase the tariff
rates on regions that violate agreements.

Visualizing outcomes. Figure 2 visualizes the effect of a
baseline implementation of the bilateral negotiation protocol,
with the agents trained independently using PPO (Schulman
et al. 2017), an RL algorithm (see Section 5 for details). You
can tell that the negotiations and agreements have a beneficial
effect: global temperatures rise less than without negotiation.
However, note that this baseline protocol may not achieve the
best trade-off in climate-economic outcomes possible. Also
note that this protocol is not necessarily robust against sim-to-
real gaps, e.g., if the agent reward function is mis-specified
or the dynamics are not calibrated well. A key objective of
this initiative is to investigate such protocols in more detail
and elucidate their properties.
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Figure 2: Comparing outcomes with RL agents trained with and without a simple bilateral negotiation protocol. Here we
show the simulated outcomes under the simple bilateral protocol from Section 4.3, and agents that were independently trained
using PPO. (a) The predicted increase in global temperature, with predictions starting in 2024 and initialization in 2019. (b) The
predicted global carbon emission accumulation, with predictions starting in 2024 and initialization in 2019. (c) The predicted
global output production (aggregated over regions) starting from 2024. (d) The predicted global consumption (aggregated over
regions) starting from 2024. The solid blue and red lines represent the mean across 100 repetitions with random seeds without
negotiation and with negotiation respectively; the shading represents 1.96 times the standard error. In each simulation episode,
agents action are decided on and executed every 5 years.

4.4 Multilateral Negotiations
Multilateral negotiations imply communication amongst sev-
eral regions simultaneously. Although more technically chal-
lenging to implement, such negotiation protocols offer more
possibilities and added realism. A key goal of this competi-
tion is to explore and implement effective negotiation proto-
cols. We now discuss a recent proposal as an example.

Climate clubs. Climate clubs (Nordhaus 2015) are one
example of a multi-region agreement. Each region that is a
part of a club agrees to 1) enact a minimum mitigation rate
and 2) enforce a minimum import tariff on regions that are
not part of the club. A high minimum import tariff acts as an
incentive to join the climate club by applying a mitigation
rate at least as high as the club’s minimum.

The negotiation protocol would specify how clubs are

formed, e.g., by randomly selecting one region to make a
proposal (µmin, τmin) to which all other regions can agree
(thereby joining the climate club) or refuse. This could be
augmented in many ways, e.g., by repeating it with the stan-
dalone regions until all regions form a climate club, by im-
plementing an iterative proposal-evaluation framework, or by
specifying a more sophisticated mechanism for climate club
proposals than random selection.

Asymmetric negotiation protocols. Certain negotiation
protocols, e.g., climate clubs, rely on the uniform treatment of
trading partners to simplify their theoretical analysis (Nord-
haus 2015). However, such limits do not apply to agent-based
simulations (Farmer et al. 2015), and therefore the negotia-
tion actions of regions in the simulator are not required to be
applied uniformly across trading partners.



In fact, effective international cooperation is based on cli-
mate justice (Klinsky et al. 2017), which often requires that
countries be treated differently based on their characteristics,
e.g., historical cumulative emissions or exposure to poten-
tial climate damages (Assembly et al. 1992). For example,
article 4.4 of the Paris Agreement states that developed re-
gions, which have historically contributed emissions in a
disproportionate manner relative to developing countries,
should continue taking the lead when it comes to mitiga-
tion efforts (Schleussner et al. 2016). However, there is no
agreed-on way to label regions as “developed” and “develop-
ing” in simulations such as RICE-N, nor is there unanimous
agreement on the validity of that particular denomination.
Rather, we invite the community to consider how the char-
acteristics of the fictitious regions in RICE-N relate to the
climate debate in the real world.

Moreover, the “fairness” of climate change legislation can
be established through many different methodologies which
treat regions differently (Dooley et al. 2021). We encourage
the community to explore important opportunities for the
innovation and study of negotiation protocols that implement
forms of climate justice.

Although building any simulation requires making design
choices, we emphasize that we do not seek to make normative
statements about “fairness” and “justice” in this work.

4.5 Intelligent negotiation protocols and
agreements

It is also possible to consider learned negotiation protocols
rather than specifying a set of handcrafted rules. For example,
the AI Economist’s two-level RL system has a coadaptive
social planner that learns tax policies that outperform the
Saez taxation framework (Zheng et al. 2022). Negotiation
protocols could similarly be designed to adapt to the behavior
of the agents in its economy. A fixed negotiation protocol
may have difficulty handling agents that exhibit strategic and
adaptive behavior and might therefore fall short of climate-
economic outcomes that could be reached by an AI-driven
mediator.

In particular, identifying a useful sequence of negotiation
protocols and agreements can be seen as an iterative discov-
ery process, where we would like to sample and improve
solutions according to the climate-economic reward they
provide. Additionally, by sufficiently exploring the space of
negotiations and agreements, one might identify many differ-
ent solutions along the Pareto frontier of climate-economic
outcomes, which enables studying the trade-offs between
different (types of) solutions.

Recent work has explored the potential of an intelligent
mediator in MARL (Liu et al. 2022). However, to the best of
our knowledge, there is no work exploring machine-learning
based solutions that combine communication, negotiation,
and agreements in the presence of strategic behavior in the
MARL setting.

5 Modeling Agent Behavior using ML
The negotiation protocols and the climate-economic dynam-
ics of RICE-N define a game-theoretic setup between the

different regions. We model the behavior of an agent i using
its policy πi (at|ot) that maps the agent’s observations to a
probability distribution over its actions.

Why use ML? Existing IAMs often use a predetermined
policy for each agent that is fixed exogenously. Such an ap-
proach would require handcrafted agent policies for each dif-
ferent negotiation protocol and the reliability of the outcomes
from the simulation will depend on the modeled policies.

In contrast, we assume each region to be a strategic agent
that is interacting with the environment and other strategic
agents in it. Here, we do not manually set the behavioral
policy πi, rather we use machine learning techniques to find
the policy that optimizes the agent’s objective, and hence
derive the agent policies endogenously.

Specifically, the agents are assumed to be rational such
that each agent i optimizes its policy πi (at|ot) to maximize
its long-term aggregate γ-discounted utility:

max
πi

Eπ1,...,πn

[
H∑
t=0

γtri,t

]
. (1)

Here, ri,t is the utility of the region i at step t determined by
its aggregate consumption Ci,t as follows:

ri,t = Ui,t =
1

1− α
Li,t

(
Ci,t

Li,t

)1−α

, (2)

where Li,t is the population of the region i at step t. The
discount factor γ models the long term value of rewards
for the agents and as such they could differ across different
agents. The discount factor for each region is often updated
with the changing administration and in the absence of any
consensus we fix γ to be homogeneous across agents as as-
sumed in (Nordhaus 2015). The aggregate consumption Ci,t

in the above equation is obtained by combining the domestic
and foreign goods consumption using the Armington model
(Armington 1969):

Ci,t =

ψdom(Ci,i,t)
λ +

∑
j ̸=i

ψfor(Ci,j,t)
λ

 1
λ

, (3)

Ci,j,t = xi,j,t(1− τi,j,t) ∀j ̸= i, (4)

where Ci,j,t are the foreign goods consumed after imposing
tariffs τi,j,t on the imported goods xi,j,t by region i from
region j at step t. Furthermore, ψdom, ψfor are shared parame-
ters and λ is the Armington elasticity parameter.

Multi-agent reinforcement learning. Simulating a ratio-
nal agent requires computing the optimal policy for each
agent. 2 Finding the optimal rational policy for each agent
in response to complex environment dynamics and other
agent policies naturally leads to MARL; Busoniu, Babuska,
and De Schutter (2008) give a comprehensive overview of
the topic. In short, MARL extends single-agent RL to find
an optimal policy for each agent interacting in a dynamic
environment to solve Equation 1.

2Although we assume the agents to be rational, other behavioral
models could also be implemented in RICE-N.



The RL framework models how an agent’s actions affect
the state of the environment and its rewards (utilities). Thus,
an RL agent has to learn to anticipate the long-term effects
of its actions. This is especially true and challenging in multi-
agent environments, e.g., in RICE-N, where agent actions
affect key climate-economic metrics, e.g., global tempera-
tures, capital investments, etc. In addition, MARL solution
algorithms have to deal with additional challenges since each
agent has to respond to the policies of other agents. This
makes the task of finding the optimal policy a moving target
(until a form of equilibrium is reached in the agent policies).
Developing effective MARL is an ongoing research topic,
and we encourage the community to explore MARL as a so-
lution framework to analyze the short and long-term effects
of (sub-)optimal behavior on the climate and economy.

Implementing RL agents. Our public code (Zhang et al.
2022) includes both CPU and GPU implementations of the
full RL pipeline using two popular RL algorithms: A2C and
PPO (Schulman et al. 2017). RICE-N can also be used with
other RL implementations.

Our base implementation models each RL agent using a
neural network policy that shares weights across agents, but
uses region-specific inputs. The architecture of the network
can be adjusted, e.g., the number of layers and the dimension
of each layer. Agent policies use separate heads for each
action. To distinguish between agents, the policy model’s
input contains agent-specific features, e.g., their population,
capital, technology factor, damage function, and a one-hot
representation of the region’s index, as well as the public
state of the world (e.g., climate conditions).

In addition, each agent gets information about negotiations,
e.g., the latest proposals made to and by this region, or the
minimum mitigation rate agreed upon by this region. How
negotiations evolve depends on the specifics of the protocol
and the different actions executed by the agent, e.g., propos-
als for other regions, decisions on proposals made by other
regions, and setting mitigation and savings rates that may
or may not be in line with what was agreed on. Depending
on the negotiation protocol, not all observations and actions
are relevant to each agent. Hence, it is recommended to use
efficient implementations that only feed the information to
agents that are relevant at a given time.

6 Evaluating Negotiations and Agreements
Evaluating solutions. A complete solution consists of a
variation of RICE-N with a negotiation protocol, agreements,
and agents (trained using RL or whose behavior is learned
or defined through other means). We can then measure the
performance of a solution via global economic and climate
metrics. In particular, because there may be intrinsic trade-
offs between these objectives, we are interested in the set of
best trade-offs, i.e., the Pareto frontier that are achievable
under a solution framework. Hence, we focus on estimating
the area-under-curve of the Pareto frontier that is achievable
for a given solution.

We define performance in this way, because the framework
itself should not encode a preference for a certain set of cli-
mate and economic outcomes. Which specific set of outcomes

is desired represents a social choice; in this work, we do
not intend to make any normative statements about which
specific outcome is preferred.

Objectives. The climate index C measures the temperature
change over the course of 100 years, compared to two ex-
tremal policies that do not mitigate at all or use a 100%
mitigation rate. The economic index E measures the increase
in global productivity3 (i.e., total GDP), similarly compared
to two extremal policies. Each index is computed as a relative
gain compared to extremal agent policies to get normalized,
dimensionless metrics along both climate and economic di-
mensions. This allows for fair comparison and computation
of an area-under-curve metric in the (C, E)-space. A basic
intuition is that these two extremal policies represent two
extremal points (very high C, very low E , and vice versa).
However, these extremal policies may not be Pareto-optimal,
may not be optimal under every negotiation protocol, and
may not be individual best-response strategies.

Empirical Pareto frontier. Each solution framework may
generate a set of different outcomes (C, E), e.g., if the nego-
tiation protocol has a free parameter that may change how
agents behave (optimally). In addition, each specific outcome
needs to account for randomness by averaging over Monte-
Carlo roll-outs performed under different random seeds.4

Each solution thus yields a set of points in the (C, E)-space,
from which we can infer an empirical Pareto frontier: the set
of points for which neither index can be increased without
decreasing the other index. Specifically, a point a Pareto-
dominates another point b if at least one index is strictly
higher and the other index is at least as high, i.e., 1) Ca > Cb
and Ea ≥ Eb, or 2) Ca ≥ Cb and Ea > Eb.

The empirical area-under-curve is defined using a hyper-
volume indicator: the area of a set of non-dominated policies
in the objective space with respect to a predetermined refer-
ence point (Van Moffaert and Nowé 2014). In our case, the
reference point is set by the extremal policies.

Besides giving a numerical value to compare different
solutions in a multi-objective setting, this score definition
has several attractive properties in a competition setting: 1)
The hypervolume indicator encourages competitors to lie as
close as possible to the true Pareto frontier, 2) it is strictly
monotonic with respect to Pareto dominance such that a set of
points that Pareto-dominates dominates another set must have
a bigger hypervolume, and 3) it incentivizes diversification
(along the Pareto frontier), i.e., competitors are incentivized
to submit solutions that make different climate-economic
trade-offs to increase the hypervolume of their set.

See Appendix G and Figure 5 for more details.

3Exploring additional, more granular measures of economic
well-being within the simulator is an interesting area of exploration.

4For example, the base implementation of RICE-N has determin-
istic climate-economic dynamics, but the agents’ behavior may be
stochastic. In our competition, we use 10 simulation roll-outs under
3 random seeds, and determine the mean and standard deviation of
the outcomes for evaluation purposes.



7 Engineering aspects and customization
The RICE-N simulation builds on the RICE model (Nord-
haus 2015), a multi-region climate-economic simulation, by
adding negotiation protocols, international trade, and support
for strategic agents. RICE-N has n agents, each representing
a region in the world or a group of (fictitious) countries that
are assumed to make decisions as a single entity. To maintain
realism, we calibrate the structural parameters and establish
a reasonable range of agent-specific parameters using data
from the World Bank API (WorldBank 2022b). Algorithm 1
in Appendix B shows the full flow of the activity component.

Code modularity. RICE-N is designed to be easily extend-
able and modular. In particular, RICE-N provides a frame-
work to implement negotiation protocols as well as learning
algorithms (e.g., RL agents) to enable designing negotiation
protocols and study their effects on global cooperation.

The simulation code is structured so that custom negotia-
tion protocols can be implemented as part of the negotiation
component. An implementation may add agent observations
and actions corresponding to the proposed negotiation pro-
tocol, and rules to generate the corresponding agreements.
Notice that the agents can have access to these additional ob-
servations even during the activity stage. These observations
are useful in letting agents adopt policies in response to the
negotiations and agreements. For example, they can learn to
punish agents that do not comply with the agreements. Be-
sides, by using action masking, the simulation can ensure that
the agreements are followed (we can also have mix where
some agreements are enforced using action masking and
some others are non-enforceable). Thus, the simulation code
provides complete freedom in implementing any negotiation
protocol of choice provided the corresponding agreements are
appropriately connected to the activity stage action through
additional observations or action masks.

Consistency checks. On the other hand, for the purpose of
the competition, we fix the actions in the activity stage and the
corresponding climate and economic dynamics. Thus, certain
parts of the simulation should not be modified by competitors,
e.g., the core climate and economic parameters and equation,
such as the ones which affect carbon emissions and produc-
tivity. Changing these components may change the problem
and prevent fair comparisons across submitted solutions. As
such, our evaluation protocol and implementation of RICE-
N include consistency checks that test submitted solutions;
each submission requiring submitting the full code of the
(modified) simulation and agent models. The activity stage is
designed to follow the well established climate-economic dy-
namics in the RICE model augmented with trades and tariffs
to include an essential influence in international negotiations.
This way the simulation follows a simple model but is rich
enough to implement interesting negotiation protocols.

Further, our implementation is set up to model each re-
gion as an RL agent that optimizes its discounted long-term
rewards. Although other agent policy models are possible,
we require that the competitors clarify how their proposed
agent policy models also aim to optimize for the same goal,
namely, the personal discounted long term reward for each
agent. This ensures that the agents behave greedily and any

improvements in global metrics are strictly a result of the
implemented negotiation protocols. See section 5 for details.

8 Working Group and Competition
To build momentum for this research direction, we invite
the community to join our working group collaboration and
competition. The goal of this initiative is to help discover
innovative, AI-based approaches to international climate ne-
gotiations that (i) go beyond traditional climate-economic
trade-offs, (ii) are sufficiently sophisticated to have real world
relevance, and (iii) are useful and relevant to policymakers.
Specifically, to motivate rapid development and comparison
of different solutions, we are organizing a competition in
which participants use RICE-N as a test bed to develop and
evaluate negotiation protocols.

The working group consists of: 1) organizers of the com-
petition, 2) competition participants, 3) an expert jury, and
4) advisors. A concrete outcome and goal of this working
group is to report the findings of the competition (vetted by
an expert jury and internal review) in a peer-reviewed publi-
cation, co-authored by the competition participants and other
working group members. The findings would then be used
to make policy and protocol recommendations to policymak-
ers. This represents a first step toward the development of
effective international climate agreements in the real world.

The competition has three tracks. The first track quantita-
tively evaluates the performance of a negotiation protocol on
climate and economic performance. The second track, in addi-
tion to the quantitative evaluation, involves a scientific assess-
ment of feasibility by a diverse, interdisciplinary jury with
expertise on machine learning, economics, climate science,
computational social science, policy writing, international re-
lations, law, and ethics. Negotiation protocols championed by
such a diverse jury are likely to be more viable for real-world
application and suitable for policymaking. The third track
invites critical analysis and suggestions for improvements.

9 Discussion
We presented the our working group collaboration, competi-
tion, the RICE-N simulation, and a conceptual framework to
include strategic negotiation into climate-economic modeling.
To our knowledge, this is the first simulation and learning-
based framework to study negotiation in climate-economic
systems of this complexity. Given the modular structure of
our implementation, RICE-N can be easily extended to in-
clude more climate, economic, or strategic features. As such,
we believe this is a compelling step to develop AI for climate
change and invite the community to build on this work.

The RICE climate and economic dynamics are relatively
simple, but are a minimal implementation of an IAM that sup-
ports studying the strategic aspects of decentralized decision-
making, negotiation, and their impact on the climate. Both
the climate and economic components could be made more
sophisticated, as implemented by a large number of exist-
ing IAMs. For example, one might add rich spatial climate
dynamics, or model more parts of the real economy, e.g.,
international companies or markets with price discovery. The
game-theoretic features could also be enhanced, e.g., by al-



lowing for forms of communication, more policy levers, more
possible interactions (e.g., technology transfer), and others.
The behavior models for the agents could also be modified,
for example, by considering heterogeneous discounting co-
efficients, alternative utility functions with different shapes,
etc. Besides, instead of considering a time span of 100 years
for each agent’s optimization, we can consider an election
cycle, thus making the agent incentives more relevant from a
practical point of view. However, simulating more complex
dynamics also incurs significant computational cost. As such,
we hope that future work will extend the RICE-N model
towards using AI for climate change mitigation and social
good.

10 Ethical Considerations
While the intention of this paper and the corresponding chal-
lenge is to stimulate innovative solutions to climate change,
there are some unintended consequences that we would like
to acknowledge and address here. These include the carbon
footprint of running the simulation itself, the economic dispar-
ities that can exist with climate negotiations, and the potential
extensibility of this simulation to the real world.

Carbon emissions from simulations. First, it is important
to acknowledge that running climate change simulations in
RICE-N will inevitably release carbon emissions into our
atmosphere. While the computational requirements of these
simulations are much smaller than training large language
models, they still exist. To mitigate this harm, we encourage
participating teams to consider their energy use during exper-
imentation, offsetting their carbon emissions if possible. For
reference emission estimates of our code and suggestions for
measurement tools, please see Appendix F.

Economic and climate disparities. Second, as the World
Bank states, “Climate change is deeply intertwined with
global patterns of inequality” and yet “the most vulnera-
ble are often also disproportionately impacted by measures
to address climate change” (WorldBank 2022a). While it is
important to determine ways that to mitigate climate change,
it is equally important to ensure that vulnerable populations
are not negatively impacted by climate change measures.

Technical aspects and limitations. Last but not least, it
is important to note that the predicted climate and economic
predictions made in RICE-N may differ in a real-world setting
due to externalities beyond the boundaries of the simulation.
A fictional world is utilized in this competition to further
illustrate the potential gap between simulation and reality,
but the uncertainty of the results should be fully understood,
especially before implementing any policies recommended
by RICE-N.

References
Armington, P. S. 1969. A theory of demand for products
distinguished by place of production. Staff Papers, 16(1):
159–178.
Assembly, U. N. G.; et al. 1992. Report of the United Nations
Conference on Environment and Development. In A/CONF,
volume 151, 26. Rio de Janeiro.

Bakaki, Z. 2022. The impact of climate summits. Nature
Climate Change, 12(7): 611–612.
Boers, N.; and Rypdal, M. 2021. Critical slowing down
suggests that the western Greenland Ice Sheet is close to
a tipping point. Proceedings of the National Academy of
Sciences, 118(21).
Bonabeau, E. 2002. Agent-based modeling: Methods and
techniques for simulating human systems. Proceedings of
the national academy of sciences, 99(suppl_3): 7280–7287.
Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller,
A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.;
Grobler, J.; Layton, R.; VanderPlas, J.; Joly, A.; Holt, B.;
and Varoquaux, G. 2013. API design for machine learning
software: experiences from the scikit-learn project.
Busoniu, L.; Babuska, R.; and De Schutter, B. 2008. A
comprehensive survey of multiagent reinforcement learning.
IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), 38(2): 156–172.
Cao, K.; Lazaridou, A.; Lanctot, M.; Leibo, J. Z.; Tuyls,
K.; and Clark, S. 2018. Emergent communication through
negotiation. arXiv preprint arXiv:1804.03980.
Carney, M. 2015. Breaking the tragedy of the horizon–
climate change and financial stability. Speech given at Lloyd’s
of London, 29: 220–230.
Chan, S.; Hale, T.; Deneault, A.; Shrivastava, M.; Mbeva, K.;
Chengo, V.; and Atela, J. 2022. Assessing the effectiveness
of orchestrated climate action from five years of summits.
Nature Climate Change, 1–6.
Chelarescu, P. 2021. Deception in Social Learning: A Multi-
Agent Reinforcement Learning Perspective. arXiv preprint
arXiv:2106.05402.
Comin, D. 2010. total factor productivity, 260–263. London:
Palgrave Macmillan UK. ISBN 978-0-230-28082-3.
De Filippi, P.; and Hassan, S. 2018. Blockchain technology
as a regulatory technology: From code is law to law is code.
arXiv preprint arXiv:1801.02507.
DeCanio, S. J.; and Fremstad, A. 2013. Game theory and
climate diplomacy. Ecological Economics, 85: 177–187.
DeConto, R. M.; Pollard, D.; Alley, R. B.; Velicogna, I.;
Gasson, E.; Gomez, N.; Sadai, S.; Condron, A.; Gilford,
D. M.; Ashe, E. L.; et al. 2021. The Paris Climate Agreement
and future sea-level rise from Antarctica. Nature, 593(7857):
83–89.
Dooley, K.; Holz, C.; Kartha, S.; Klinsky, S.; Roberts, J. T.;
Shue, H.; Winkler, H.; Athanasiou, T.; Caney, S.; Cripps, E.;
et al. 2021. Ethical choices behind quantifications of fair
contributions under the Paris Agreement. Nature Climate
Change, 11(4): 300–305.
Farmer, J. D.; Hepburn, C.; Mealy, P.; and Teytelboym, A.
2015. A third wave in the economics of climate change.
Environmental and Resource Economics, 62(2): 329–357.
Foerster, J. N. 2018. Deep multi-agent reinforcement learn-
ing. Ph.D. thesis, University of Oxford.
Foerster, J. N.; Chen, R. Y.; Al-Shedivat, M.; Whiteson, S.;
Abbeel, P.; and Mordatch, I. 2017. Learning with Opponent-
Learning Awareness.



Greeven, S.; Kraan, O.; Chappin, É. J.; et al. 2016. The emer-
gence of climate change and mitigation action by society: an
agent-based scenario discovery study. Journal of Artificial
Societies and Social Simulation, 19(3) 9).
Hanumaiah, V.; and Genc, S. 2021. Distributed Multi-
Agent Deep Reinforcement Learning Framework for Whole-
building HVAC Control.
Hardin, G. 1968. The tragedy of the commons: the population
problem has no technical solution; it requires a fundamental
extension in morality. science, 162(3859): 1243–1248.
Jaques, N.; Lazaridou, A.; Hughes, E.; Gulcehre, C.; Ortega,
P.; Strouse, D.; Leibo, J. Z.; and De Freitas, N. 2019. Social
influence as intrinsic motivation for multi-agent deep rein-
forcement learning. In International conference on machine
learning, 3040–3049. PMLR.
Kellett, C. M.; Weller, S. R.; Faulwasser, T.; Grüne, L.; and
Semmler, W. 2019. Feedback, dynamics, and optimal control
in climate economics. Annual Reviews in Control, 47: 7–20.
Klinsky, S.; Roberts, T.; Huq, S.; Okereke, C.; Newell, P.;
Dauvergne, P.; O’Brien, K.; Schroeder, H.; Tschakert, P.;
Clapp, J.; et al. 2017. Why equity is fundamental in climate
change policy research. Global Environmental Change, 44:
170–173.
Lacoste, A.; Luccioni, A.; Schmidt, V.; and Dandres, T. 2019.
Quantifying the Carbon Emissions of Machine Learning.
arXiv preprint arXiv:1910.09700.
Le Gléau, T.; Marjou, X.; Lemlouma, T.; and Radier, B. 2022.
Towards circular and asymmetric cooperation in a multi-
player Graph-based Iterated Prisoner’s Dilemma. In 14th
International Conference on Agents and Artificial Intelli-
gence.
Lerer, A.; and Peysakhovich, A. 2017. Maintaining coopera-
tion in complex social dilemmas using deep reinforcement
learning.
Lessmann, K.; Marschinski, R.; and Edenhofer, O. 2009. The
effects of tariffs on coalition formation in a dynamic global
warming game. Economic Modelling, 26(3): 641–649.
Li, S. 2017. Obviously strategy-proof mechanisms. American
Economic Review, 107(11): 3257–87.
Liu, D.; Shah, V.; Boussif, O.; Meo, C.; Goyal, A.; Shu, T.;
Mozer, M.; Heess, N.; and Bengio, Y. 2022. Coordinating
Policies Among Multiple Agents via an Intelligent Commu-
nication Channel. arXiv preprint arXiv:2205.10607.
Lovejoy, T. E.; and Nobre, C. 2018. Amazon tipping point.
Madani, K. 2013. Modeling international climate change
negotiations more responsibly: Can highly simplified game
theory models provide reliable policy insights? Ecological
Economics, 90: 68–76.
Mai, V.; Zhang, T.; and Lesage-Landry, A. 2021. Multi-
agent reinforcement learning for renewable integration in the
electric power grid. In NeurIPS 2021 Workshop on Tackling
Climate Change with Machine Learning.
Martin-Bariteau, F.; and Scassa, T. 2020. Artificial intelli-
gence and the law in Canada. Artificial Intelligence and the
Law in Canada (Toronto: LexisNexis Canada, 2021).

Mitchell, R. B. 2003. International environmental agree-
ments: a survey of their features, formation, and effects. An-
nual review of environment and resources, 28(1): 429–461.
Moore, F. C.; Lacasse, K.; Mach, K. J.; Shin, Y. A.; Gross,
L. J.; and Beckage, B. 2022. Determinants of emissions
pathways in the coupled climate–social system. Nature,
603(7899): 103–111.
Nordhaus, W. 2015. Climate clubs: Overcoming free-riding
in international climate policy. American Economic Review,
105(4): 1339–70.
Nordhaus, W. 2018. Evolution of modeling of the economics
of global warming: changes in the DICE model, 1992–2017.
Climatic Change, 148(4): 623–640.
Nordhaus, W. D. 2007. A review of the Stern review on the
economics of climate change. Journal of economic literature,
45(3): 686–702.
Paquette, P.; Lu, Y.; BOCCO, S. S.; Smith, M.; O.-G., S.;
Kummerfeld, J. K.; Pineau, J.; Singh, S.; and Courville,
A. C. 2019. No-Press Diplomacy: Modeling Multi-Agent
Gameplay. In Wallach, H.; Larochelle, H.; Beygelzimer, A.;
d'Alché-Buc, F.; Fox, E.; and Garnett, R., eds., Advances in
Neural Information Processing Systems, volume 32. Curran
Associates, Inc.
Pavan, A.; Segal, I.; and Toikka, J. 2014. Dynamic mecha-
nism design: A myersonian approach. Econometrica, 82(2):
601–653.
Pörtner, H. O.; Roberts, D. C.; Adams, H.; Adler, C.; Aldunce,
P.; Ali, E.; Begum, R. A.; Betts, R.; Kerr, R. B.; Biesbroek,
R.; et al. 2022. Climate change 2022: impacts, adaptation
and vulnerability.
Rochedo, P. R.; Soares-Filho, B.; Schaeffer, R.; Viola, E.;
Szklo, A.; Lucena, A. F.; Koberle, A.; Davis, J. L.; Rajão, R.;
and Rathmann, R. 2018. The threat of political bargaining to
climate mitigation in Brazil. Nature Climate Change, 8(8):
695–698.
Schelling, T. C. 1980. The Strategy of Conflict: with a new
Preface by the Author. Harvard university press.
Schleussner, C.-F.; Rogelj, J.; Schaeffer, M.; Lissner, T.;
Licker, R.; Fischer, E. M.; Knutti, R.; Levermann, A.; Frieler,
K.; and Hare, W. 2016. Science and policy characteristics
of the Paris Agreement temperature goal. Nature Climate
Change, 6(9): 827–835.
Schmidt, V.; Goyal, K.; Joshi, A.; Feld, B.; Conell, L.;
Laskaris, N.; Blank, D.; Wilson, J.; Friedler, S.; and Luc-
cioni, S. 2021. CodeCarbon: Estimate and Track Carbon
Emissions from Machine Learning Computing.
Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.;
Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.;
Graepel, T.; Lillicrap, T.; and Silver, D. 2020. Mastering
Atari, Go, chess and shogi by planning with a learned model.
Nature, 588(7839): 604–609.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Shoham, Y.; and Leyton-Brown, K. 2008. Multiagent sys-
tems: Algorithmic, game-theoretic, and logical foundations.
Cambridge University Press.



Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap,
T.; Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Has-
sabis, D. 2016. Mastering the game of Go with deep
neural networks and tree search. Nature, 529(7587):
484–489. Bandiera_abtest: a Cg_type: Nature Research
Journals Number: 7587 Primary_atype: Research Pub-
lisher: Nature Publishing Group Subject_term: Computa-
tional science;Computer science;Reward Subject_term_id:
computational-science;computer-science;reward.
Smead, R.; Sandler, R. L.; Forber, P.; and Basl, J. 2014. A bar-
gaining game analysis of international climate negotiations.
Nature Climate Change, 4(6): 442–445.
Telser, L. G. 1980. A theory of self-enforcing agreements.
Journal of business, 27–44.
Van Moffaert, K.; and Nowé, A. 2014. Multi-objective rein-
forcement learning using sets of pareto dominating policies.
The Journal of Machine Learning Research, 15(1): 3483–
3512.
Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds,
T.; Georgiev, P.; Oh, J.; Horgan, D.; Kroiss, M.; Danihelka,
I.; Huang, A.; Sifre, L.; Cai, T.; Agapiou, J. P.; Jaderberg,
M.; Vezhnevets, A. S.; Leblond, R.; Pohlen, T.; Dalibard,
V.; Budden, D.; Sulsky, Y.; Molloy, J.; Paine, T. L.; Gul-
cehre, C.; Wang, Z.; Pfaff, T.; Wu, Y.; Ring, R.; Yogatama,
D.; Wünsch, D.; McKinney, K.; Smith, O.; Schaul, T.; Lil-
licrap, T.; Kavukcuoglu, K.; Hassabis, D.; Apps, C.; and
Silver, D. 2019. Grandmaster level in StarCraft II using
multi-agent reinforcement learning. Nature, 575(7782): 350–
354. Bandiera_abtest: a Cg_type: Nature Research Journals
Number: 7782 Primary_atype: Research Publisher: Nature
Publishing Group Subject_term: Computer science;Statistics
Subject_term_id: computer-science;statistics.
Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland,
M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.;
Weckesser, W.; Bright, J.; van der Walt, S. J.; Brett, M.;
Wilson, J.; Millman, K. J.; Mayorov, N.; Nelson, A. R. J.;
Jones, E.; Kern, R.; Larson, E.; Carey, C. J.; Polat, İ.; Feng,
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A The Activity Component: Climate,
Economics, Trade, and Tariffs

A.1 Climate and Economic Dynamics
We now describe the RICE-N dynamics developed from
DICE and RICE models by (Nordhaus 2018; Kellett et al.
2019) that govern the evolution of the world state from time t
to t+ 1 for the different regions. Note that variables without
an agent index are global quantities.

Carbon mass. The total carbon mass in the climate system
is given by:

Mt+1 = ΦMMt +BM

∑
i

Ei,t, (5)

Ei,t = ELand
t + σi,t(1− µi,t)Yi,t, (6)

Mt
.
=
[
MAT

t MUP
t MLO

t

]⊤ ∈ R3, (7)

ΦM
.
=

[
ζ11 ζ12 0
ζ21 ζ22 ζ23
0 ζ32 ζ33

]
, (8)

BM
.
=

[
ξ2
0
0

]
. (9)

This describes a three-reservoir model of the global carbon
cycle, in which MAT describes the average mass of carbon
in the atmosphere, MUP is the average mass of carbon in

Figure 3: The three-reservoir carbon mass model.

the upper ocean, and MLO the average mass of carbon in
the deep or lower ocean, see Figure 3. ΦM is the Markov
transition matrix describing how carbon transfer between
different reservoirs. BM describes how the weight of carbon
emission affects the carbon accumulation in the reservoirs.

Global temperature. Ultimately, increasing carbon mass
leads to rising temperatures:

Tt+1 = ΦTTt +BTFt, (10)

Tt
.
=
[
TAT
t T LO

t

]⊤ ∈ R2, (11)

Ft = F2× log2

(
MAT

t

MAT,1750

)
, (12)

ΦT
.
=

[
ϕ11 ϕ12
ϕ21 ϕ22

]
, (13)

BT
.
=

[
ξ1
0

]
. (14)

Similar to the carbon mass dynamic, there are two layers
in the energy balance model, see Figure 4. TAT is the com-
bined average temperature in atmosphere, land surface, and
upper ocean (simply referred to as the “atmospheric layer”
hereafter). TLO is the temperature in the lower ocean. ΦT

is the Markov transition matrix describing how heat trans-
fers between different layers. BT describes how carbon mass
contributes to the temperature increases.

Output production. The production in a region is given
by the total factor productivity (TFP) (Comin 2010) formula:

Yi,t = Ai,tK
γ
i,tL

1−γ
i,t . (40)

Production depends on three factors: total factor productivity
(“technology”) At, capital Kt, and labor Lt. This production
function is common in the economic literature and used in the
DICE/RICE models. The capital elasticity γ ∈ [0, 1] explains
the different levels of contribution of capital and labor.

Population. The number of people in a region, denoted Lt

grows as:

Li,t+1 = Li,t

(
1 + La;i

1 + Li,t

)lg;i

. (38)

There are two parameters LA;i and lg;i. La;i represents
the convergence population of region i and lg;i shows how
fast the population Li,t converge to La;i. Please refer to the
Appendix D for a more detailed analysis and the calibration
procedure.



Level of technology. The technology factor At describes
how efficient production is, i.e., how many units of output a
region achieves given fixed capital and labor:

Ai,t+1 = (eη + gA;ie
−δA;i∆(t−1))Ai,t. (39)

Here, η represents the long-term growth of economics
which is usually larger than 0, gA represents the short-term
part of economics growth, and δA represents the speed of
decay of short-term growth factor. ∆ is the time difference
between steps. We use η = 0.33% as in (Nordhaus 2018).

Capital. The amount of capital evolves as:

ΦK
.
= (1− δK)

∆
, (15)

Ki,t+1 = ΦK,iKi,t +∆
(
1− a1TAT

t − a2
(
TAT
t

)2)
(16)

×
(
1− θ1;i,tµθ2

i,t

)
Yi,tsi,t. (17)

The evolution of the capital comes from two parts. The first
part is capital inherited from the previous period with de-
preciation. In the second part, st is a control variable which
represents the investment/savings rate (as a fraction of pro-
duction). That is, as a base amount, the economy invests/saves
a total of Yi,tsi,t which yields new capital. This base amount
is further modified by 2 multipliers: the damage function and
mitigation/abatement costs, which are discussed below.

Damage function. The climate damage function represents
the economic damage due to climate change, e.g., increases
in the atmosphere temperature TAT

t . That is, in Equation 36,
the fraction of new capital is modified by the damage function

1− a1TAT
t − a2

(
TAT
t

)2
, (18)

following (Nordhaus 2015). That is, higher temperatures lead
to less new capital. Similarly, 1 − θ1;i,tµθ2

t is the fraction
of new capital after taking into account carbon emission
mitigation. Mitigating carbon emissions more (higher µt)
means (dirty) production needs to be lowered, hence yields
less new capital.

Mitigation (abatement) cost. Following (Kellett et al.
2019), for a mitigation rate µi,t, the mitigation cost is

θ1;i,tµ
θ2
i,tYi,tsi,t, (19)

where θ1;i,t is given by Equation 37. This represents the loss
in capital growth due to a fraction of production being used
for mitigation.

Carbon intensity of economic activity. A critical part of
the model is the interaction between the climate and eco-
nomic parts. Specifically, the RICE model describes how
production leads to carbon emissions:

ELand
t = EL0 · (1− δEL)

t−1
, (20)

Ei,t = ELand
t + σi,tAi,t(1− µi,t)Yi,t (21)

σi,t+1 = σi,te
−gσ;i(1−δσ;i)

∆(t−1)∆. (22)

Here Eland
t is the carbon emission due to (changes in) land

use, EL0 is the carbon emission in the base year, and δEL

Figure 4: The two-reservoir temperature model.

is the speed of decrease of changes in land use. The rates
0 < δEL < 1, 0 < δL0 < 1 are free parameters. Due to a
lack of data, Eland

t is set to be the same for each region.
Ei,t is the total carbon emission, Eland

t is emission from
natural sources, while Ei,t−Eland

t is emission caused by eco-
nomic activity. σi,tAi,t is the effective carbon intensity of eco-
nomic activity: a higher technology factor lead to higher emis-
sions, but can be modulated by lower σ (which can be thought
of as the degree of “clean” production). µidxi,t ∈ [0, 1] is a
control variable called the abatement (ratio), which represents
the proportion of the economics contributing to reducing car-
bon emission. Furthermore, we have 2 parameters gσ and δσ
that are fitted to data. gσ is the rate of decrease in carbon
emissions.

A.2 Trade
We now describe the international trade dynamics and the
resulting regional consumption and utilities. Regions trade
by exporting their own consumption goods and importing
other regions’ consumption goods at a fixed unit price5.

Agent actions. Each region i at time t must first specify a
desired basket of consumption goods bi,t = [bi,1,t, ..., bi,k,t]
that they are willing to import from the other regions. These
desired imports form a matrix of bids Bt such that the import
bid by region i for goods from j at time t is bi,j,t ≥ 0, i.e.,
the amount of goods region i is willing to import from region
j at time t is bi,j,t.

Regions also set an upper bound pxi,t ∈ [0, 1] on the pro-
portion of their own consumption goods that they are willing
to export.

Tariffs. Regions can also choose to impose import tariffs
on other regions. We denote an import tariff imposed by
region i on a region j by τi,j,t ∈ [0, 1]. If region i imposes
an import tariff τi,j,t ∈ [0, 1] on region j, region i consumes

Ci,j,t = xi,j,t(1− τi,j,t), (23)

and τi,j,txi,j,t is added to a reserve fund specific to that
region.

Consumption. Consumption of domestic goods Ci,i,t is
determined according to gross output, the savings rate and
exports:

Ci,i,t = (1− si,t)Qi,t −
∑
j ̸=i

xj,i,t. (24)

The aggregated consumption Ci,t at time t for region
i is given by the Armington elasticity model (Lessmann,

5More generally, prices should be dynamic, but the current im-
plementation does not support this.



Marschinski, and Edenhofer 2009)) as follows:

Ci,t =

ψdom(Ci,i,t)
λ +

∑
j ̸=i

ψfor(Ci,j,t)
λ

 1
λ

. (25)

B RICE-N dynamics
At a high-level, Equations 34 and 35 capture climate dynam-
ics (temperature and carbon mass), while Equations 36, 38,
39, and 40 capture economic dynamics. Finally, Equation 41
captures the carbon-intensity of production, providing a key
link between the climate and economic sectors.

C Creating a 27-Region Simulation
We feature n = 27 fictitious regions in our public simula-
tion. These are inspired by merging and splitting real-world
countries, but are not exactly the same as real-world regions.

We used real data from the World Bank API (World-
Bank 2022b), e.g., GDP, capital stock, population, and CO2-
quivalent (CO2eq) emissions. Furthermore, the World Bank
groups countries into regions, including Sub-Saharan Africa,
South Asia, North America, the Middle East and North
Africa, Latin America and the Caribbean, Europe and Cen-
tral Asia, East Asia and Pacific. In each region, the different
countries (or sub-regions) are classified into 4 income groups:
high income, upper middle income, lower middle income,
and low income.

Merging regions. We assume the GDP, capital stock, and
population for the regions are additive. We also assume the
gross CO2eq emissions across the regions are additive. Thus,
we have

Km =
∑
i

Ki, (26)

Lm =
∑
i

Li, (27)

Ym =
∑
i

Yi, where Yi := AiK
γ
i L

1−γ
i , (28)

Am =
Ym

Kγ
mL

1−γ
m

, (29)

σm =

∑
i σiYi
Ym

. (30)

Note that the production function is not scale-invariant:

Yt = (AtKt)
γ(AtLt)

1−γ (31)

c · Yt = (c ·AtKt)
γ(c ·AtLt)

1−γ (32)

̸= (c ·At)(c ·Kt)
γ(c · Lt)

1−γ , ∀c > 0. (33)

Hence, one cannot get the technology after merging multiple
regions by simply adding the individual technology levels.
Rather, the combined technology factor is imputed from the
combined productions, labor, and capital.

Splitting large regions. To avoid huge economies that dom-
inate the fictitious world, we split large economies into pieces

based on predetermined fractions ci and random sampled Ai:∑
i

ci = 1, (42)

Li = ciLm, (43)
Yi = ciYm, (44)

Ki =
Yi

AiL
1−γ
i

, (45)

σi = σm. (46)

D Model Calibration

The structural parameters of the RICE-N simulation were
calibrated to meet the following objectives:

1. Temperatures match the real data in different versions of
RICE-N with 1 region, 27 regions, and 189 regions (all
raw regions), under 0% and 100% mitigation. To make the
computational cost more affordable, we use the 27-region
version for the competition.

2. The optimistic-pessimistic temperature outcomes fit the
projects of Shared Socioeconomic Pathways in the IPCC
Sixth Assessment Report (Pörtner et al. 2022) (2 - 5 deg
Celsius increase in the year of 2100). Each region opti-
mizes the target without negotiation and direct coopera-
tion in the pessimistic case. In the optimistic case, regions
negotiate with each other using the baseline bilateral ne-
gotiation protocol. Please also notice that, in the extreme
pessimistic case that regions ignore the climate change
at all and always choose 0% mitigation and 100% sav-
ings, the temperature leads to approximately 7 deg Celsius
increase in the year of 2100.

The parameters that we estimated and the corresponding
estimation methods are listed below:

• The dynamic parameters for total factor productivity A:
gA and δA.

• The capital K: for the regions whose capital data is not
available, we use a KNN regressor (Buitinck et al. 2013)
to estimate it.

• The dynamic parameters for population L: lg; similarly,
for the regions whose convergence population data is not
available, we use a KNN regressor to estimate it.

• The initial carbon intensity σ0: for the regions whose
capital data is not available, we use a KNN regressor to
estimate it.

• KNN regressor: Because all regions have GDP and popu-
lation data, we use them as features. For each region that
lacks emission data and capital data, we find the nearest 5
neighbors according to its GDP and population. We use
the average of the 5 neighbors’ emission data and capital
data as the estimated values.



Algorithm 1: Activity Component (implemented by Climate_and_economy_simulation_step()) Note that we only
list input state variables and omit model parameters.
Require: exogenous emissions, land emissions, intensity, production factor, labor, capital,

previous global temperature, previous government balance
Require: actions : mitigation rates, saving rates, tariffs, export rate limit, desired imports

for each region do
mitigation cost← f(intensity) ▷ Equation 37
damages← f(previous global temperature) ▷ Equation 18
abatement cost← f(mitigation rate, mitigation cost) ▷ Equation 19

production← f(production factor, capital, labor) ▷ Equation 40
gross output← f(damages, abatement cost, production) ▷ Equation 40
government balance← f(interest rate, previous government balance)
investment← f(saving rate, gross output) ▷ Using Equation 36

scaled imports← f(gross output, desired imports) ▷ Equation 52
debt ratio← f(previous government balance) ▷ Equation 53
scaled imports← f(scaled imports, debt ratio) ▷ Equation 54

end for
for each region do

max potential exports← f(gross output, investment, export rate limit) ▷ Equation 55
Scaled imports← f(scaled imports, max potential exports) ▷ Equation 56

end for
for each region do

tariff-ed imports, tariff revenue← f(scaled imports, tariffs) ▷ Equation 23
domestic consumption← f(savings, gross output, scaled imports) ▷ Equation 24
aggregate consumption← f(domestic consumption, tariff-ed imports) ▷ Equation 25
utility← f(labor, aggregate consumption) ▷ Equation 2
government balance← f(imports, exports) ▷ Equation 57

end for
temperature← f(previous temperature, previous carbon mass, exogenous emissions)
carbon mass← f(previous carbon mass, intensity, mitigation rate, production, land emissions)
for each region do

capital← f(capital, investment) ▷ Equation 36
labor← f(labor) ▷ Equation 38
production factor← f(capital) ▷ Equation 39
carbon intensity← f(carbon intensity) ▷ Equation 41

end for

Tt+1 = ΦTTt +BT

(
F2× log2

(
MAT

t

MAT,1750

)
+ F EX

t

)
, (34)

Mt+1 = ΦMMt +BM

(∑
i

σi,t(1− µi,t)Yi,t + ELand
t

)
, (35)

Ki,t+1 = ΦK,iKi,t +∆
(
1− a1TAT

t − a2
(
TAT
t

)2)(
1− θ1;i,tµθ2

i,t

)
Yi,tsi,t, (36)

θ1;i,t =
pb

1000 · θ2
(1− δpb)t−1 · σi,t, (37)

Li,t+1 = Li,t

(
1 + La;i

1 + Li,t

)lg;i

, (38)

Ai,t+1 = (eη + gA;ie
−δA;i∆(t−1))Ai,t, (39)

Yi,t = Ai,tK
γ
i,tL

1−γ
i,t , (40)

σi,t+1 = σi,te
−gσ;i(1−δσ;i)

∆(t−1)∆. (41)



D.1 Population dynamic calibration
Denoting L∞;i := limt→∞ Li,t, in the limit t → ∞ we
have:

L∞;i = L∞;i

(
1 + La,i

1 + L∞;i

)lg;i

, (47)

1 =

(
1 + La;i

1 + L∞

)lg;i

. (48)

As long as lg;i is not zero, L∞;i = La;i. Thus, La;i is the
long-term population size and a free parameter that is fitted
to data. Assuming {Li,t}t=1,2,... is monotonically increas-
ing or decreasing, the absolute value of lg;i represents how
fast it converges to La;i. The closer Li,t is to monotonically
increasing or monotonically decreasing in the real data, the
easier it is to fit lg;i and La;i.

To fit the population parameters, we take logs on both sides
of Equation 38:

logLi,t+1 =

logLi,t + lg;i(log (1 + La;i)− log (1 + Li,t+1)), (49)

where logLi,t+1 − logLi,t and log (1 + Li,t) are given by
the data. log (1 + Li,t) and lg;i can then be estimated by
linear regression.

D.2 Technology dynamic calibration
We estimate both gA and δA from the existing data
{At}i=1···n by solving a regression problem:

g∗a;i, δ
∗
a;i = argmax

ga;i,δA,i

Li,t (50)

Li,t = ||Ai,t − (exp η + gA,i exp (−δA,i∆(t− 1)))Ai,t||2.
(51)

This can be solved by numerical optimization algorithms,
e.g., as provided in SciPy (Virtanen et al. 2020).

Because the emissions data from the World Bank API do
not fit the form of the σ dynamic as assumed by DICE2016,
use the DICE2016 parameter values for gσ and δσ .

E Implementation details
Consistency checks. On the other hand, for the purpose of
the competition, we fix the actions in the activity stage and the
corresponding climate and economic dynamics. Thus, certain
parts of the simulation should not be modified by competitors,
e.g., the core climate and economic parameters and equation,
such as the ones which affect carbon emissions and produc-
tivity. Changing these components may change the problem
and prevent fair comparisons across submitted solutions. As
such, our evaluation protocol and implementation of RICE-
N include consistency checks that test submitted solutions;
each submission requiring submitting the full code of the
(modified) simulation and agent models. The activity stage is
designed to follow the well established climate-economic dy-
namics in the RICE model augmented with trades and tariffs
to include an essential influence in international negotiations.
This way the simulation follows a simple model but is rich
enough to implement interesting negotiation protocols.

Further, our implementation is set up to model each re-
gion as an RL agent that optimizes its discounted long-term
rewards. Although other agent policy models are possible,
we require that the competitors clarify how their proposed
agent policy models also aim to optimize for the same goal,
namely, the personal discounted long term reward for each
agent. This ensures that the agents behave greedily and any
improvements in global metrics are strictly a result of the
implemented negotiation protocols. See Section 5 for details
on the agent model.

CPU vs GPU simulations. We provide both CPU and GPU
versions of the base RICE-N, but evaluate all submissions
using the CPU version to reduce the cost of evaluation. The
CPU and GPU implementations of the base version of RICE-
N yield consistent results. The GPU version of the simulation
is meant to accelerate training.

F CO2 Emission
Participants who use Google Colab have a carbon efficiency
of 0.37 kg CO2eq/kWh. This was measured on 0.35 hours of
computation on a Tesla T4 (300W TDP) node.

The emissions produced by going through the tutorial and
training a baseline model are estimated to be 0.01 kg CO2eq
of which 100% are offset by the cloud provider.

Estimates were obtained using the Machine Learning
Impact calculator (Lacoste et al. 2019) available at https:
//mlco2.github.io/impact#compute. We encourage partici-
pants to use tools such as CodeCarbon (Schmidt et al. 2021)
(available at https://codecarbon.io) as illustrated in the tuto-
rial notebook to track their carbon emissions and report it as
part of their publications.

G Submission and evaluation details
Structure of a submission. Submissions consist of the
full simulation code, agent behavioral models, and other
components that may be needed to generate full simulation
roll-outs.

If participants use the GPU version of the simulation, they
should also provide a CPU version and ensure that any mod-
els trained on the GPU version and any customization yield
consistent results on a CPU.

Evaluation metrics. Solutions are evaluated by computing
the area under the empirical Pareto frontier produced by that
solution. The area computation is explained in Figure 5.

H WarpDrive Support
Performing multi-agent RL is significantly faster using GPU
acceleration. We provide a GPU version of the simulation and
an end-to-end GPU-based RL training loop using WarpDrive.
For details, see the instruction on the Github repo https://
github.com/mila-iqia/climate-cooperation-competition.

I Trade constraints
To ensure that total imports and total exports match, three
constraints are enforced on regions’ trade flows.

https://mlco2.github.io/impact#compute
https://mlco2.github.io/impact#compute
https://codecarbon.io
https://github.com/mila-iqia/climate-cooperation-competition
https://github.com/mila-iqia/climate-cooperation-competition


Table 1: Calibrated parameters for 27 regions

Region ID A0 K0 L0 La deltaA gA lg sigma0

1 1.872 0.239 476.878 669.594 0.139 0.122 0.034 0.456
2 8.405 3.304 68.395 93.497 0.188 0.103 0.058 0.529
3 3.558 0.109 64.122 135.074 0.161 0.127 0.026 0.816
4 1.927 1.424 284.699 465.308 0.244 0.134 0.024 1.221
5 8.111 0.268 28.141 23.574 0.163 0.106 -0.057 0.290
6 4.217 3.184 548.754 560.054 0.170 0.095 0.080 0.302
7 2.491 0.044 46.489 59.988 0.058 0.049 0.037 0.420
8 2.525 1.080 69.194 100.016 0.346 0.079 0.029 1.010
9 2.460 0.184 513.737 1867.771 1.839 0.462 0.017 0.310

10 12.158 2.642 38.101 56.990 0.131 0.063 0.020 0.350
11 0.993 0.160 522.482 1830.325 0.086 0.065 0.019 0.235
12 5.000 2.289 165.293 230.191 0.183 0.071 0.027 0.419
13 29.854 2.020 165.751 216.927 0.088 0.075 -0.002 0.254
14 23.315 3.039 109.395 143.172 0.088 0.075 -0.002 0.254
15 29.854 0.687 56.355 73.755 0.088 0.075 -0.002 0.254
16 10.922 0.606 705.465 532.497 0.096 0.168 -0.016 0.781
17 9.634 0.608 465.607 351.448 0.096 0.168 -0.016 0.781
18 8.621 0.453 239.858 181.049 0.096 0.168 -0.016 0.781
19 3.190 0.129 690.002 723.513 0.054 0.068 -0.013 0.949
20 2.034 0.381 455.401 477.518 0.054 0.068 -0.013 0.949
21 13.220 16.295 502.410 445.861 0.252 0.074 -0.033 0.170
22 3.190 0.044 234.601 245.994 0.054 0.068 -0.013 0.949
23 6.387 1.094 317.880 287.533 0.194 0.237 -0.053 0.840
24 2.481 0.090 94.484 102.997 0.203 0.201 0.037 1.665
25 10.853 17.554 222.891 168.351 0.005 0.000 -0.012 0.285
26 4.135 1.002 103.294 87.418 0.158 0.123 -0.063 0.601
27 2.716 1.034 573.818 681.210 0.097 0.101 0.043 0.638

1. For each region i, if the region’s total desired imports
from other regions exceed its own gross output, then the
imports are scaled to sum up to the region’s gross output.
We enforce the constraint that

∑
i̸=j bi,j,t ≤ Qi,t, which

is to say that a region may not import more goods than
its current gross output capacity. This constraint helps
the agents avoid insurmountable debt, thereby stabiliz-
ing trade balances over the entire time period while also
easing learning. If a region’s desired imports exceed its
production capacity, then its import bids are scaled down
to size :

bi,j,t ← bi,j,t min

{
1,

Qi,t∑
i̸=j bi,j,t

}
. (52)

2. Regions are allowed to carry a (positive or negative) trade
balance Di,t. At the start of each new time step, each
region’s trade balance, positive or negative, accumulates
interest at a fixed rate of 10%. Based on this balance, a
region’s debt-to-initial-capital ratio is determined and the
imports are scaled according to this ratio:

di,t = 10
Di,t

K0
, (53)

bi,j,t ← bi,j,t(1 + di,t). (54)

3. If other regions’ total desired imports from region i exceed
region i’s upper bound on exports xmax

i,t , then the bids for
goods from region i are scaled proportionally to xmax

i,t .
Otherwise, each region receives its full import bid from
region i. In other words, region i cannot export more
goods at time t than it could consume at time t, so other
regions will import less from region i.

xmax
i,t = min(pxi,tQi,t, Qi,t − Ii,t), (55)

xi,j,t = bi,j,t min

{
1,

min(xmax
i,t )∑

j ̸=i bi,j,t

}
. (56)

After all constraints have been applied, the trade balance
for the next period is calculated:

Di,t+1 = Di,t +∆

∑
j ̸=i

xj,i,t −
∑
j ̸=i

xi,j,t

 . (57)

J Parameters and variables
Tables 1, 2, 3, 4, and 5 list all (calibrated) parameters and
variables.



(i) (ii)

Figure 5: A visualization of how teams are ranked using the hypervolume indicator (Zitzler et al. 2003). (i) A single
team’s set of submissions is represented by a set of points of the same color. The hypervolume indicator is the area of a set
of non-dominated policies (Van Moffaert and Nowé 2014) in the 2-dimensional (C, E)-space, as represented by the shaded
area. (ii) Multiple sets of solutions ({a}, {b,d,f}, {c,e}, {g})proposed by various teams. Teams are ranked by the value of their
hypervolume indicators: a higher value is a better score. A first team submits point (a), so their set of solutions contains one
point. The hypervolume indicator of this solution corresponds to area 1. A second team submits points (c) and (e). Their score
corresponds to the sum of areas 2 and 4. A third team submits points (b), (d) and (f), and so their score is the sum of areas 2, 3
and 5. A final team submits a single point (g). The hypervolume indicator of this point corresponds to the sum of all areas 1 to 6.
As such, the team that submitted point (g) is ranked highest, the team that submitted points (b), (d) and (f) is second, the team
that submitted points (c) and (e) is third, and the team that submitted point (a) is last.

K Formal Description for Negotiations and
Agreements

The aim of this section is to specify a working mathematical
definition of a negotiation protocol in the context of the
simulator and competition. Given the interdisciplinary nature
of this work, we fully expect these definitions to grow in the
future.

Consider a set of agents representing regions in RICE-
N. These agents are seeking to individually optimize their
economic outcomes, but the sum of their economic outcomes
depends on them collaborating toward a common climate
goal. Hence, such a setting can be understood as a variable
sum, or mixed-motive, game (Schelling 1980).

K.1 Agent actions
Consider n agents with k-dimensional action spaces acting
from t = 0 to t = T .

Their collective action space at time t is a kn-dimensional
space, where each agent’s action space is a k-dimensional
subspace of the collective action space. The collective action
space at time t is denoted At, and agent i’s action space is
denoted At

i. At each timestep t, an nk-dimensional vector is
sampled from At, with each of the n agents specifying how
to sample k values.

Analogously, the collective action space over time is a
knT -dimensional space, where each agent’s action space

over time is a kT -dimensional subspace of the collective
action space over time. The collective action space over time
is denoted A and agent i’s action space over time is denoted
Ai. At the end of a run, an nkT -dimensional vector will have
been sampled from the simulator detailing each action of
each agent at each timestep.

K.2 Agreements

The definition of an agreement in the context of international
environmental agreements usually draws on the definition of
a treaty in the 1969 Vienna convention on the law of treaties:
“an international agreement concluded between States in writ-
ten form and governed by international law” (Mitchell 2003).
Notably, states participating in the agreement express a “con-
sent to be bound” (Mitchell 2003).

Algorithmically defining agreements is challenging for nu-
merous reasons. In particular, legal agreements are drafted
in natural language, which can not be directly interpreted by
computers. This would seemingly encourage the design of
agreements through a mathematical lens to eliminate ambigu-
ity. However, in agreements, ambiguity is not a bug, it’s a fea-
ture. Many agreements are intentionally drafted to be generic
enough to generalize to a broad set of situations (Martin-
Bariteau and Scassa 2020), "some of which could not have
been foreseen at the time of drafting" (De Filippi and Hassan
2018).



Variable Type Symbol Description
Carbon Mass Global, endogenous Mt, [MAT

t ,MUP
t ,MLO

t ] A three-dimensional vector that indicates the aver-
age carbon accumulation in the atmosphere, upper
oceans, and lower oceans.

Temperature Global, endogenous Tt, [TAT
t , TLO

t ] A two-dimensional vector that indicates the aver-
age temperature of the atmosphere and the lower
ocean.

Population Regional, exogenous Li,t Population and the labor in a region.
Technology Regional, exogenous Ai,t Technology factor in the production function of a

region.
Capital Regional, endogenous Ki,t Total capital accumulated by a region.
Carbon intensity of
economic activity

Regional, exogenous σi,t A scalar coefficient that gives the emissions result-
ing from economic production.

Balance of trade Regional, endogenous Di,t Surplus or deficit from international trade activi-
ties.

Cost of mitigation ef-
forts

Global, endogenous θ1;i,t An estimate of the cost of mitigation efforts.

Emission due to land
use

Regional, exogenous ELand
t Carbon emission for land use in a specific region.

Table 2: World-state variables. Global type variables correspond to the entire world, whereas regional type variables correspond
to each region. Endogenous variables are those which are affected by the agent actions, whereas exogenous variables are those
that are predetermined and not affected by agent actions. Note that the values of endogenous variables can vary across steps in a
predetermined manner. Notation: indices are separated from subscripts referring to a name by semicolons (;). For instance,
the parameter θ1 varies in time t and by region i, which is denoted as θ1;i,t.

Variable Symbol Description
Savings rate si,t The fraction of output production to be invested in capital.
Mitigation rate µi,t The fraction of mitigation efforts by a region.
Import tariffs τi,j,t The fraction of imports that are converted to tariff revenue.
Export limits pxi,t The fraction of domestic production that regions are willing to export.
Import bids bi,j,t The amount of production each region is willing to import from other

regions.

Table 3: Agent-action variables.

K.3 Commitments, enforcement and incentives
Although regions can commit to a course of action, there is no
supranational body that can enforce regions to respect com-
mitments. Regions therefore always have the option to breach
the conditions in their agreements. Hence, regions may need
to engage in strategic behavior, such as mutual enforcement
or providing incentives to other regions, to maintain coopera-
tion and adherence to agreements. For instance, they might
use trade and tariffs to reward or punish other regions. How-
ever, understanding to what extent such behaviors are rational
and strategically advantageous is an open challenge.

K.4 Formalizing agreements
In light of this, we provide working definitions of proposed
and enacted agreements in RICE-N.

A proposed agreement between agents I ⊆ {1, ..., n} is
a set of constraints on the union of subspaces {Ai}i∈I .

An enacted agreement between agents I ⊆ {1, ..., n} is a
set of constraints on the sum of subspaces {Ai}i∈I in which
each agent i ∈ I agrees to the constraints that apply to their
subspace Ai.

Naturally, an agreement enacted at time t can apply con-
straints to the entire space A, but actions that have already
been drawn from

∑t−1
0

∑
i∈I Ai must be taken as given:

agreements can not change the past. For example, an agree-
ment at time t can constrain the sum total of emissions over
a full run of the simulator, but it can not alter emissions from
t = 0 to t = t− 16.

A key distinction between proposed agreements and en-
acted agreements is that, while proposed agreements can be
generated in any manner, enacted agreements must be volun-
tarily accepted by the agents constrained by the agreement,
expressing the "consent to be bound" aspect of the Vienna
convention on the law of treaties (Mitchell 2003). In other
words, a proposed agreement cannot be enacted (become
an enacted agreement) without the consent of all implicated
agents. If a proposed agreement is not enacted, then its con-
straints are not applied in the simulation.

Currently, an enacted agreement only applies changes to
At. In the next time period, new proposed agreements are
submitted and evaluated, which enables regions to not follow
through on their previous agreements.

6In practice, reported carbon emissions are influenced by carbon
accounting practices. Distinguishing between ground truth emis-
sions, regions’ private climate-economic information and what they
make publicly available within the simulator is an interesting area
of exploration.



Variable Symbol Description
Initial population L0;i The initial population for a specific region.
Population convergence target La;i The estimated convergence population for a specific region.
Population convergence rate lg;i How fast the current population converges.
Initial capital K0;i The initial capital for a specific region.
Initial carbon intensity σ0;i The initial carbon intensity for a specific region.
Carbon intensity parameters gσ;i and δσ;i The decay speed of the carbon intensity.
Initial technology factor A0;i The initial carbon technology factor for a specific region.
Technology factor parameter gi,A and δi,A The update pattern of the technology factor.
Initial land use emission EL0;i The initial land use emission for a specific region.
Land use emission parameter δEL;i The depreciation rate for the land use emission in a specific region.

Table 4: Agent-specific constants.

Variable Symbol Description
Capital elasticity of production γ The contribution from capital and population to the economy.
Armington substitution parameter λ How substitutable consumption goods from different regions are.
Long term welfare discount rate ρ How much short-term welfare is weighted versus long-term welfare.
capital depreciation rate ΦK The capital depreciation rate.
Backstop technology pb Price of a backstop technology that can remove carbon dioxide from the

atmosphere.
Backstop technology parameter δpb The decay speed of the cost of backstop technology.
Mitigation efficiency parameter θ2 The efficiency loss component of mitigation
Domestic share parameter ψdom The relative preference for domestic goods
Foreign share parameter ψfor The relative preference for foreign goods

Table 5: Global constants.

K.5 Agreements through negotiation protocols
A negotiation protocol is an algorithmic procedure to pro-
pose agreements. The goal of such a protocol is to propose
agreements that agents will enact and that lead to optimal
climate-economic outcomes by balancing collective climate
and individual economic objectives.

Negotiation protocols currently consist of two (potentially
iterative) phases: 1) generating proposals, and 2) evaluating
proposals.

Generating proposals. Agreements can be generated in
any way that participants see fit. Such agreements can be pro-
posed 1) internally, which is to say that agents participating
in the negotiation protocol can send messages to other agents
in which they propose agreements, or 2) externally, where
an external body (represented within the negotiation proto-
col itself) proposes an agreement to a subset of participating
agents.

Evaluating proposals. Agents participating in the simula-
tion must evaluate proposals that concern them to determine
whether they wish to accept them or refuse them. Importantly,
a proposed agreement that is refused by an agent i must not
apply constraints to the action space Ai of the agent that
refused it. However, an agreement proposed internally by a
participating agent is de facto considered accepted by that
agent. For example, an agent might partition their own action
space and propose an agreement to another agent while guar-
anteeing that they will only choose actions within a certain
partition based on the other agent’s acceptance or refusal.

Repeating the process. Generation and evaluation can iter-
ate in a negotiation protocol. For example, an agent i could

initially propose an agreement to an agent j. The agent j can
refuse this agreement, and propose an alternative agreement
back to i, or to another agent k.

Generating a proposed agreement that agents will enact can
be seen as a double constraint satisfaction problem: the goal
of a negotiation protocol is to identify a set of constraints in
the action space that are accepted by the participating agents.
Agents map proposed agreements implicating them to either
0 or 1 depending on acceptance or refusal. The agreement
is itself a set of constraints on the action space. Therefore,
generating a proposed agreement is equivalent to generating
a set of constraints on the action space that is mapped to the
intersection of the acceptance space for all implicated agents.

This implies a curse of dimensionality when it comes to
generating agreements: since an agreement fails unless all
concerned agents accept, the more agents an agreement is
proposed to, the less likely it is that the agreement is enacted.

K.6 Communication
Within RICE-N, agents may communicate by exchanging
messages, which consist of numerical values that do not di-
rectly affect the climate-economic dynamics of the simulator.
However, such messages might influence subsequent actions
that directly impact the dynamics.

The goal of the competition can therefore be broadly un-
derstood as attempting to structure communication within the
simulation in a way that, e.g., agents might share information
about goals or priorities, their willingness to cooperate, with
the end goal of aligning incentives and maximizing their indi-
vidual objectives, and ultimately global climate and economic
goals.

Modeling and learning how to communicate in multi-agent



RL is its own subfield. We refer readers to (Zhu, Dastani, and
Wang 2022) for a recent review of the topic, and (Foerster
2018) for an in-depth technical introduction.
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