
Rethinking Machine Learning for Climate Science: A Dataset Perspective

Aditya Grover1,2

1 Department of Computer Science
2 Institute of the Environment and Sustainability

University of California, Los Angeles

Abstract

The growing availability of data sources is a predominant
factor enabling the widespread success of machine learning
(ML) systems across a wide range of applications. Typically,
training data in such systems constitutes a source of ground-
truth, such as measurements about a physical object (e.g.,
natural images) or a human artifact (e.g., natural language).
In this position paper, we take a critical look at the validity
of this assumption for datasets for climate science. We argue
that many such climate datasets are uniquely biased due to the
pervasive use of external simulation models (e.g., general cir-
culation models) and proxy variables (e.g., satellite measure-
ments) for imputing and extrapolating in-situ observational
data. We discuss opportunities for mitigating the bias in the
training and deployment of ML systems using such datasets.
Finally, we share views on improving the reliability and ac-
countability of ML systems for climate science applications.

1 Introduction
Large datasets are fueling major advances in the scal-

ing of machine learning (ML) systems for a variety of real-
world usecases of relevance to science and society, ranging
from creative art and text generation (Ramesh et al. 2021;
Brown et al. 2020) to protein folding (Jumper et al. 2021)
and drug discovery (Vamathevan et al. 2019). This has led
to a growing optimism for the broad field of climate change
as well (Rolnick et al. 2022). With advancements in sensory,
storage, and network technology, we now have large datasets
available for many domains of interest to climate change,
such as weather forecasting (Rasp et al. 2020), agriculture
and forestry (Zheng et al. 2019), and chemical and materi-
als discovery (Kirklin et al. 2015; Chanussot et al. 2021),
among others.

As the first step of any ML pipeline, the choice of a train-
ing dataset is critical to the downstream performance of ML
systems. Both the quantity and quality of a dataset play an
important role, as demonstrated by numerous prior studies
(e.g., (Gebru et al. 2021)) that correlate the size, noise, and
bias within training datasets with broad and holistic indica-
tors of downstream performance, such as accuracy and fair-
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ness. Given the growing enthusiasm in using ML for cli-
mate change, it begs the question: are datasets for climate
domains aligned with ML pipelines in use today?

In this position paper, we argue that climate science do-
mains can present unique challenges for ML systems given
how datasets are collected and generated. In particular, we
note that climate datasets used in practice are routinely based
on reanalysis or gridding that combine disparate real and
simulated/proxy measurement sources. While such a proce-
dure ensures that datasets have excellent coverage, it leads to
a bias that can propagate within standard ML pipelines. This
calls for a rethink of both training and deployment of data-
centric ML pipelines for climate science, as well as commu-
nity guidelines for dataset and model release.

The rest of the paper is structured as follows: in Section 2,
we briefly review current data collection practices in climate
science and the role of ML in improving climate projections.
In Section 3, we present opportunities for aligning machine
learning with data practices in climate science, as well as
community guidelines for improving the transparency and
accountability of ML models. Finally, we conclude in Sec-
tion 4 with a summary and discussion on broader impacts,
including implications of this research on domains focusing
on climate change mitigation and adaptation, as well as other
disciplines within ML.

2 What Makes Climate Data Unique?
Climate modeling is fundamental to understanding the inter-
actions between the atmospheric, oceanic, and land surface
process, including anthropogenic interventions. Such mod-
els can be used for short-term weather forecasts or long-term
projections of the Earth’s climate under different interven-
tions. Beyond scientific pursuits, the outputs of these models
inform regional and international policy aimed at near- and
long-term climate mitigation and adaptation.

Typically, climate models couple our physical under-
standing with on-ground observations. However, such mod-
els can be insufficient for certain downstream usecases due
to limited accuracy and/or spatiotemporal resolution. For ex-
ample, nowcasting requires very short-horizon weather pre-
dictions (up to 2 hours ahead) that is greater than the time
it takes to spin up numerical weather prediction (NWP) sys-
tems (Ravuri et al. 2021). Similarly, many general circula-
tion models (GCM) and earth system models (ESM) that are



used for projecting future climate operate at a 2 degree reso-
lution ( 200km), which is much lower than typically needed
(<0.1 degrees) for effective mitigation planning at a regional
level (Fowler, Blenkinsop, and Tebaldi 2007).

In such scenarios, data-driven solutions involving ma-
chine learning can play a big role in overcoming the limi-
tations of current climate models. However, the quality of a
ML system depends significantly on the availability of high
quality datasets. This presents two key challenges. First, his-
torical in-situ observational records for climate variables are
irregularly sampled due to uneven access to sensory tech-
nology, leading to a geographical bias. Second, for climate
change in particular, we require projections of future climate
under different interventions (e.g., different fossil fuel us-
age) — many of these scenarios have never been observed
in the past, but are necessary for governments and interna-
tional organizations to analyze and formulate policies.

Together, the above challenges necessitate the use of al-
ternate data sources, such as reanalysis datasets and grid-
ded datasets. Reanalysis datasets combine historical obser-
vations with the outputs of climate models, whereas grid-
ded datasets rely on statistical tools for imputing miss-
ing values or proxy measurements made via satellites. In
both cases, the goal is to generate high volume and high
coverage datasets for training ML systems. Several such
datasets are in use today, such as CHIRPS (Funk et al. 2015),
a gridded dataset for high-resolution rainfall combining
satellite measurements with in-situ observations, and ERA-
5 (Muñoz-Sabater et al. 2021), a reanalysis dataset main-
tained by the European Centre for Medium-Range Weather
Forecasts. These datasets are updated daily and contain his-
torical observations spanning many decades, providing ex-
cellent spatiotemporal coverage at the expense of their re-
spective model bias. As a concrete example, consider data
for soil moisture available from the ERA reanalysis dataset.
Soil moisture is an important climate variable for project-
ing the agriculture viability of any land area. For validation
on real measurements, ERA5 uses in-situ soil measurement
data from 14 sites — 4 in North America, 6 in Europe, 1 in
Australia, and 2 in Africa, reflecting a highly biased distri-
bution with respect to global demographics and completely
omitting some continents.

3 Roadmap for Climate ML Pipelines
In the previous section, we motivated the use of reanalysis
and gridded datasets for training ML models, and the inher-
ent bias they encode. How should we train ML systems on
such climate datasets? The status quo, as adopted in several
papers (e.g., Oses et al. (2020); Baño-Medina, Manzanas,
and Gutiérrez (2020)), is to treat the reanalysis dataset as
ground-truth. However, this ignores the context in which the
dataset was generated and is likely to propagate or even po-
tentially amplify the bias in the dataset. While there is no
simple solution, we believe that ML pipelines that explicitly
account for this additional context can be far more effec-
tive for downstream applications. In this regard, we outline
our position on exciting directions for improving the training
and deployment of ML pipelines for climate science.

3.1 Training
Model selection. While training benefits immensely from
the use of high coverage (but biased) datasets, we can con-
sider alternate strategies for model selection (e.g., via the
use of validation datasets). In areas for which we have in-
situ observations, we can monitor the model’s performance
directly on such data for the held-out years, sidestepping any
bias due to the use of gridded or reanalysis tools. Also, note
that since model selection is less data-hungry than training
the model itself, this strategy can also be potentially applied
for underserved regions with few in-situ measurements.

Unsupervised learning and domain adaptation. In the
last few years, there have been several advances in large
scale unsupervised representation learning, including both
contrastive and generative approaches (Murphy 2022).
While in-situ measurements of climate variables are hard to
obtain for arbitrary targets, we can obtain high-quality fea-
ture descriptors for unsupervised pretraining.

Alternatively, a closely related problem is that of unsu-
pervised domain adaptation, where we need to transfer ML
models trained on one domain to a related domain (with zero
or few labels). Various techniques have been developed to
enable such a transfer, such as the use of domain randomiza-
tion (Tobin et al. 2017) for control tasks. In the climate con-
text, we can consider the gridded/reanalysis datasets as the
source domain and consider transferring ML models trained
on such datasets to points in the target domain of interest.

3.2 Deployment
Uncertainty quantification. Well-calibrated uncertainty
estimates can play a key role in reliably communicating the
predictions of ML systems trained on gridded and reanal-
ysis datasets and downstream users relying on theses pre-
dictions. In principle, one could use any gridded or reanaly-
sis dataset for training a ML model. However, as one might
expect, different datasets differ in their imputation strate-
gies and hence, the predictions of ML models trained on
these datasets would also differ. Consequently, we can treat
these models as an ensemble (Lakshminarayanan, Pritzel,
and Blundell 2017) and use the distribution of predictions
for each of the ML models as a measure of uncertainty due
to the imputation strategy.

Datasheets and model cards. While the need for docu-
menting datasets and models is well-recognized in both the
ML and climate communities, the standards and terminolo-
gies vary significantly. As we see more real-world deploy-
ments, it is important to expand the scope of existing pro-
tocols, such as datasheets (Gebru et al. 2021) and model
cards (Mitchell et al. 2019) in the ML community, to better
document key details relating to the gridded and reanalyzed
datasets, such as the details on the auxiliary climate models
and data sources used for dataset creation, the distribution of
in-situ measurement sites, and any known limitations of the
imputation strategy. We believe including such details can
significantly improve the transparency and interpretability
of ML systems, as well as aid in reproducibility — a grow-
ing area of concern for ML in scientific applications (Kapoor
and Narayanan 2022).



4 Broader Impacts
This position paper calls for a careful reflection on the use of
datasets for ML applications in climate science. We argued
that while current reanalysis and gridded datasets might
seem to have global coverage at high spatiotemporal band-
widths, these datasets are in fact reflective of the geographic
and socioeconomic disparities in access to sensory technol-
ogy (e.g., satellites, weather balloons). Quantifying and mit-
igating this bias without compromising on overall accuracy
is an open challenge for the ML community. Our work high-
lights a select group of directions in this regard grounded in
metrics concerning accuracy, reliability, and reproducibility.

While the use of gridded and reanalysis datasets is com-
mon practice in the climate science community, we also ex-
pect similar challenges in other fields relevant to climate
change, and ML more broadly. For example, efforts to use
ML for computational chemistry are fundamentally bottl-
necked by the domain gap in computational simulation soft-
wares and real experimental data. Even more so, with the ad-
vent and rapid proliferation of deep generative models, we
are likely to find future ML systems trained on mixtures of
real and synthetic data, and thus leading to a natural cross-
pollination of tools and techniques.
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