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Abstract
Our world’s climate future is on thin ice. The study of long-
term weather patterns in the polar regions is an important
building block in tackling Climate Change. Our understand-
ing of the past, the present and the future of the earth sys-
tem, and the inherent uncertainty, informs planning, mitiga-
tion, and adaptation strategies. In this work we review pre-
vious applications of machine learning and statistical com-
puting to polar climate research, and we highlight promising
probabilistic machine learning methods that address the mod-
elling needs of climate-related research in the Arctic and the
Antarctic. We discuss common challenges in this interdisci-
plinary field and provide an overview of opportunities for fu-
ture work in this novel area of research.

Introduction and Background
This section introduces and defines the Polar Earth and
Climate Science domain and substantiates the urgent need
for continuing research in this field, most importantly to
inform policy and decision-making based on a scientific,
uncertainty-aware foundation. Next, we give a brief back-
ground on the recent growth in machine learning (ML) to
address Climate Change, propelled by an increase in data
availability, the simultaneous leaps in computing power, and
advances in artificial intelligence (AI) and machine learning
methods. We motivate the emphasis on using a probabilistic
framework to convey uncertainty modelling needs.

With this uncertainty-aware perspective, this paper con-
tributes a review of important machine learning applications
in the polar parts of the Earth and Climate Science domain,
thus building on the wider work of Rolnick et al. (2019).
We discuss methodological aspects and the types of do-
main problems addressed in previous work to then synthe-
sise common challenges. We introduce suitable probabilistic
machine learning methods, particularly Bayesian Optimisa-
tion and causal methods, and highlight novel research from
these areas where we recognise strong opportunities for fu-
ture work in polar climate applications.

Polar Earth and Climate Science
Climate Change is one of the greatest challenges humanity is
facing today. While on average, our globe is warming, tem-
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peratures in the Arctic have increased by more than double
the global mean over the last two decades (IPCC 2019). Pro-
jections from a framework of state-of-the-art physics-based
climate simulation models, CMIP6 (the acronym for Cou-
pled Model Intercomparison Project phase 6) (Eyring et al.
2016), predict that the Arctic ocean will become largely free
of sea ice during summer months by 2050, even under op-
timistic anthropogenic emission scenarios (Notz and Com-
munity 2020). Contributions from ice sheets and glaciers,
notably the Greenland Ice sheet and the West Antarctic Ice
Sheet, are understood to be the dominant source of the rise in
sea level (IPCC 2019). This poses a direct threat to the liveli-
hoods of a large number of people who live on low-lying is-
lands, in coastal regions but also in inland, flood prone areas.
These and other concerning changes like ocean acidifica-
tion resulting from absorption of anthropogenic CO2 emis-
sions, ocean warming (IPCC 2019), or the acceleration in
the Antarctic Circumpolar Current (Shi et al. 2021) highlight
the critical role the polar regions hold in the context of the
climate system: The cryosphere, describing all frozen water
part of the Earth system, as well as the neighboring oceans,
are strongly linked to other components of the global climate
system through the exchange of carbon, water and energy
(IPCC 2019).

Accelerated by the recent pace of change and the loom-
ing threats to livelihoods and ecosystems, there are strong
academic efforts in further growing our understanding of
the field. Earth Science and Climate Science are both well-
established research areas. The Earth Sciences are tradition-
ally decomposed into the five interacting systems of earth,
namely the atmosphere, the hydrosphere, the biosphere, the
geosphere, and the cryosphere. Climate Science is the study
of long-term weather patterns, primarily investigating atmo-
spheric properties, but also building on the other subsystems
of the Earth Sciences by studying interactions with, for ex-
ample, the ocean, or, over longer timescales, the geosphere
(Springer Nature 2022). To illustrate the interconnection of
these disciplines, ice cores from Antarctica for instance, en-
able paleoclimatology researchers to determine past concen-
trations of greenhouse gases in the atmosphere. To do so,
they analyse air bubbles which were trapped in the ice up to
a million years ago. Thus, discoveries in the Earth Sciences
often seed new insights for Climate. The problem of map-
ping the bedrock topography of Antarctica further show-



Figure 1: Schematic diagram of selected aspects relevant to the intersection of the Probabilistic Machine Learning field and the
Polar Earth and Climate Science domain discussed in this paper.

cases how these fields are intertwined. This geology and
Earth Sciences problem is directly related to the estimation
of the ice topography and ice mass - quantities climate sci-
entists are highly concerned with (Lythe and Vaughan 2001;
Fretwell et al. 2013). Both examples fall under the umbrella
of the Polar Sciences, a term that generally denotes scien-
tific research from different disciplines relating to the polar
regions (Elsevier 2022).

Because of the urgency imposed by the rapidly chang-
ing climate and its transnational scope, global organisations
have formed and governments have committed to direct re-
search resources, investments, and policy changes at this
pressing issue. CSIRO, Australia’s national science agency,
identified adapting to climate change as a global megatrend,
with particular concern about natural disasters, climate-
driven migration and impacts on water quality, infrastruc-
ture and also public health (Naughtin et al. 2022). The In-
tergovernmental Panel on Climate Change (IPCC), a body
of the United Nations and paramount international platform,
was created to assess the scientific foundations of Climate
Change and to inform policy makers about their findings.
Leading researchers from the various interconnected fields,
including those studying earth and climate, contribute to
the IPCC assessment reports. The most recent, sixth assess-
ment cycle includes a ’Special Report on the Ocean and
Cryosphere in a Changing Climate’ (IPCC 2019), empha-
sising the need to deepen understanding in this dedicated
domain.

Machine Learning for Climate Research
Whilst Earth and Climate Science are well-established ar-
eas of research, and specifically research concerning the
Arctic and Antarctic is advancing, the intersection of Arti-
ficial Intelligence/Machine Learning/Data Science and the
Climate Sciences is a fairly novel field. Within this com-
munity the first of the annual Climate Informatics confer-
ence series, referred to as Climate Informatics, was held in
2011. Monteleoni, Schmidt, and McQuade (2013) provide
an overview of new opportunities in this field, and in 2022
a new journal, named Environmental Data Science, posi-

tioned at the interface of Data Science and the environment,
was established by leaders from the Climate Informatics
community. Figure 1 presents a schematic overview of the
two intersecting research areas and highlighted concepts re-
viewed in this paper. These concepts, discussed throughout
this section, are signaled with bold font. The data-focused
and Earth Science research communities differ in their mod-
elling paradigms, publishing norms, and research priorities.
Despite these research silos, a growing community of re-
searchers has acted on the great opportunity of truly interdis-
ciplinary research and has established research organisations
with the aim of combining powerful machine learning and
statistical methods with the deep understanding of climate
and earth system processes and the high-impact questions
driving research in related fields. The organisation, Climate
Change AI, emerged in 2019 from a series of workshops on
‘Tackling Climate Change with Machine Learning’ at lead-
ing machine learning conferences, as well as side events at
the 2019 and 2021 United Nations Climate Change Confer-
ences (COP25 and COP26 respectively) (Climate Change
AI 2022). The eponymous paper (Rolnick et al. 2019) gives
a big picture overview of problems associated with climate
change where machine learning can be applied with impact.
Rolnick et al. (2019) allocate areas of machine learning to
suitable climate change solution domains, spanning mitiga-
tion and adaptation strategies. Within climate prediction to
inform adaptation strategies, Rolnick et al. outline impor-
tant sub problems like data assimilation or the incorpora-
tion of ice sheet dynamics into climate models to improve
projections. In this paper, we aim to build on this overview,
by deepening the review of machine learning applications to
Polar Climate and Earth Science problems, and by outlining
opportunities suitable to this specific domain.

Remote sensing measurements (see Figure 1) from satel-
lites and aircrafts, data from fixed monitoring stations,
and field measurements from ice cores, roaming UAVs, or
oceanographic research vessels and floats (Shi et al. 2021)
are all contributing to an increase in earth observation data
available today. Continuous earth observations by satellite
only started with Landsat 1 in 1972 (NASA 2021) so it can-



not support the study of long-term climate patterns. Fortu-
nately, indirect measurements of ice cores, rocks and corals,
can provide data that goes multiple glacial periods back. Ad-
vances in remote sensing technology allow a wide variety
of properties to be directly measured or inferred, includ-
ing altimetry, seismic activity, gravimetry, surface albedo,
sea surface wind speeds or atmospheric properties. Data in
this domain commonly have spatial and temporal dimen-
sions (see Figure 1) and thus exhibit varying resolutions.
These special characteristics can incur challenges with the
data fusion and modelling process. Shirmard et al. (2022)
provide a review of how machine learning and specifically
deep learning is utilised to process various remote sensing
data for mapping geological features - a use cases which is
closely related to Climate Science applications. Overall, the
data surge is a momentous opportunity to increase our un-
derstanding of the least explored and less understood parts of
the Earth, such as the oceans, the Arctic and Antarctic. To-
gether with the simultaneous increase in computing power
(hardware and algorithms) and the rise of machine learning
and statistical computing, particularly in deep learning and
causal inference methods (see Figure 1), this is creating vast
opportunities to harness data-centric methods for scientific
discovery.

Uncertainty is an essential aspect of climate change data
and its analysis. Predictions from climate models, together
with their associated uncertainty, need to be interpreted to
inform sensible decision-making. The uncertainty materi-
alised in predictions arises from multiple sources and can
be classified into measurement and model related. Some of
these source of uncertainty arise from: physical limitations
on sensors that place an upper bound on accuracy, data sets
which can present biases, models with limited complexity
which are imperfect representations of natural phenomena
and inaccurate assumptions. We therefore believe that quan-
tifying model uncertainty with probabilistic machine learn-
ing methods, is important, especially in this domain. Many
probabilistic machine learning methods are rooted in the
Bayesian framework (see Figure 1), where model param-
eters are represented with random variables, whose proba-
bility distributions are used as a central tool to represent
uncertainty on different layers of abstraction in the model.
Furthermore, a fully Bayesian approach incorporates do-
main expert knowledge through prior distributions, which
after careful elicitation are combined with data and model
assumptions to provide logically consistent and uncertainty
aware estimations. We will therefore emphasise the perspec-
tive of uncertainty quantification throughout this paper.

Review of applications
This section reviews machine learning and statistical com-
puting applications for Polar Climate and Earth Science.
Applications are grouped into climate model emulators, sea
level rise prediction, topography mapping, sea ice forecast-
ing, and lastly climate feedbacks and teleconnection. Table
1 gives an overview of selected applications discussed, the
geographical region addressed, the methods used, and the
high-level discipline of the publishing venue.

Climate model emulators

State-of-the-art climate models, also known as Earth System
Models (ESMs), simulate the interactions between the main
climate drivers (atmosphere, land, ocean and ice) through
physics-based coupled dynamics, to study the processes
based on simulated data and to make predictions about fu-
ture climate (Rolnick et al. 2019; Balaji et al. 2017). The
latest state-of-the-art CMIP model, CMIP6 (Eyring et al.
2016), is highly computationally expensive and data inten-
sive (Balaji et al. 2017). This complexity arises because the
model simulates a large set of different processes and sub-
processes within and between the climate drivers, which
take place on different time and spatial scales. Furthermore,
CMIP6 is a multi-model ensemble of around 100 mod-
els which were developed by over 50 different modelling
groups (Copernicus 2021), scaling computational demands.
One weakness of climate models is their sensitivity to small
changes in initial conditions or other inputs (Balaji et al.
2017), known as the butterfly effect from early chaos theory
literature (Abraham and Ueda 2000). The characteristics of
this challenge, i.e. to learn complex and often spatially dis-
tant interactions within an uncertain environment, matches
the potential of machine learning which can help with model
estimation from fusing large amounts of multi-modal and
disparate sources of data.

To combat the computational and robustness issues of cli-
mate models, deep learning can be used to create emulation
models, which do not sacrifice accuracy but are computa-
tionally highly efficient once trained (Reichstein et al. 2019).
While climate models remain the benchmark for most gen-
eral climate prediction tasks today, the use of machine learn-
ing models to replace, complement or improve traditional
first principle models is gaining momentum: Reichstein et al.
propose to combine the strengths of theory-driven and data-
driven modelling in a hybrid approach. Physical models are
usually interpretable and deeply rooted in theoretical under-
standing of the phenomenon, while machine learning mod-
els are highly flexible and can adapt to data. Based on these
different strengths of either paradigm, Reichstein et al. sug-
gest that suitable domain problems replace physical sub-
model components which are less well described by phys-
ical theory, with machine learning models, which may even
be able to learn unexpected patterns unknown to experts. Be-
cause the cryosphere is a component of the earth system that
is challenging to simulate (Gagné, Gillett, and Fyfe 2015),
this could be a great opportunity to apply deep learning emu-
lation models. The authors of (Reichstein et al. 2019) further
identify that machine learning models could also be used as
a calibration layer on top of traditional models, to correct
error patterns of the model. In addition Reichstein et al. em-
phasise the need to quantify models’ credibility and confi-
dence, specifically in the case of extrapolation. This could be
achieved by using Bayesian Deep Learning Models, which
bridge exactly this gap within deep learning (Chandra, Az-
izi, and Cripps 2017). On a meta-level, decreasing the com-
putational load for climate modelling will both speed up the
process, and benefit the footprint of research in this field.



Application Region Method Reference Venue category

Emulation of climate
models

Global Deep Learning Reichstein et al. (2019) Interdisciplinary

Sea level rise
prediction

Antarctic Hybrid probabilistic modelling
[Statistics]

Kopp et al. (2017) Earth & Climate

Sea level rise
prediction

Antarctic Bayesian Hierarchical Models
[Statistics]

Zammit-Mangion et al.
(2014, 2015)

ML & Statistics

Bedrock and ice
topography mapping

Antarctic Convolutional Neural Networks
(CNN) [Deep Learning]

Leong and Horgan
(2020)

Earth & Climate

Sub-seasonal sea ice
forecasting

Arctic Attention-based Ensemble Model
(EA-LSTM) [Deep Learning]

Ali et al. (2022) ML & Statistics

Seasonal sea ice
forecasting

Arctic U-Nets [Deep Learning] Andersson et al. (2021) Interdisciplinary

Determining causal
climate drivers

Arctic Causal Effect Networks
(CEN)[Causal Inference]

Kretschmer et al. (2016) Earth & Climate

Determining causal
climate feedbacks

Antarctic Convergent cross-mapping
(CCM) [Causal Inference]

van Nes et al. (2015) Earth & Climate

Table 1: Overview of selected applications of machine learning (ML) and statistical computing methods to problems from the
Polar Earth and Climate Science domain. The ’Venue category’ reflects the broad research community and is based on the
subject area of the journal which the cited work is published in.

Sea level rise predictions

The prediction of sea level rise is an important problem due
to its far reaching implications on human habitat. Because
the mass balance (the sum of ice losses and gains) from
the Greenland ice sheet, the Antarctic ice sheet and glaciers
are the primary drivers of sea level rise (IPCC 2019), these
modelling tasks are directly related to each other and con-
sequently also to the dynamics of climate models (Rolnick
et al. 2019). Government agencies like the United States’
NOAA, Australia’s CSIRO, dedicated research groups like
the Sea Level Research Group from CIRES at the Univer-
sity of Colorado Boulder, or IMBIE, an international collab-
oration of scientist led by the University of Leeds, all work
in this field. The emission sensitivity in the predictions of
the IPCC (2019) for mass loss is eminent. Especially in the
high-emission scenario the accumulating uncertainty in pre-
dicted global mean sea level rise is visible through the wide
range of predicted increase at low confidence. In addition,
sea level rise is not distributed uniformally around the globe
(IPCC 2019). Particularly the modelling of ice loss in the
Antarctic is recognised to be challenging. A recent mech-
anistic understanding of accelerating effects from ice-shelf
hydro-fracturing and collapsing of ice cliffs on mass loss,
produces non-linear trends that far exceed established pre-
dictions (Kopp et al. 2017). In this work Kopp et al. incor-
porate an ensemble of Antarctic ice-sheet (AIS) simulations
with a probabilistic framework. Kopp et al. argue strongly
for the use of fully Bayesian models, and recommend for fu-
ture work to identify domain-imposed constraints and well-
informed prior beliefs over parameters.

Aligning with the emphasis on probabilistic methods

to address this highly uncertain task, is the work of
Gopalan, Zammit-Mangion, and McCormack. This pre-
dicts the Antarctica’s contribution to sea-level rise using
a Bayesian Hierarchical Model (Zammit-Mangion et al.
2014, 2015). On a high level, the different hierarchical lay-
ers constitute of the parameter model, the process model
(modelling latent dynamical processes), and the observa-
tion model (Gopalan, Zammit-Mangion, and McCormack
2021). Altimetry, gravimetry and GPS observations are
used. Knowledge about multiple relevant physical processes
is incorporated into the statistical model as prior distribu-
tions and dependence structures, informed by traditional nu-
merical ice dynamics models. A strong advantage of this
technique is that all estimated quantities, not just predicted
sea-level rise, have an associated credible interval reflecting
uncertainty. Estimates, e.g. gravimetry parameter estimates,
can be interpreted, offering insights for domain experts. Fur-
ther, Gopalan, Zammit-Mangion, and McCormack (2021)
used approximation methods to improve computational ef-
ficiency. They provide an overview of Bayesian modelling
and inference in glaciology, showcasing two projects, one
being the above work by Zammit-Mangion et al. (2014).

Topography mapping
An understanding of the topography underneath the ice
forms the basis for ice sheet modelling. The series of
BedMap models, BedMap and the updated BedMap2, com-
prise of gridded digital topographical models of the surface
elevation, subglacial bed rock elevation, sea floor elevation,
and also ice thickness for the continent of Antarctica (Lythe
and Vaughan 2001; Fretwell et al. 2013). Data from various



surveys, at different spatial scales, were assimilated to con-
struct state-of-the-art mappings. The BedMap2 data set lays
the foundation for many other researchers in this field. The
dependence on up-stream estimates of quantities like sub-
glacial bed rock elevation, which can not be directly mea-
sured, exemplify the role of uncertainty within polar re-
search. Building on top of BedMap2, Leong and Horgan
(2020) introduce DeepBedMap to address the problem of
imputing high spatial resolution bed elevation grids for ar-
eas in Antarctica where no data at high resolution is avail-
able. A variant of Deep Convolutional Neural Networks,
adapted from Enhanced Super-Resolution Generative Ad-
versarial Network, is used to generate high-resolution maps.
Additional gridded data on ice surface elevation, velocity
and snow accumulation, all available at high spatial resolu-
tions, are used as inputs. To capture the spatial interaction of
the different properties, the neural network was trained on
ground truth data. Resulting surface roughness was evalu-
ated as an indicator for realistic topography maps. Other re-
cent work uses topographic satellite data to map supraglacial
lakes in regions of Antarctica using Random Forest classi-
fiers (Dirscherl et al. 2020). Despite the black-box character
of such models, this showcases how machine learning can
be used for assimilation and imputation purposes, as a vital
element within the process of polar climate research.

Sea ice forecasting
The prediction of sea ice extent is an important task that in-
forms safe shipping routes, hazard alerts, and climate pre-
diction models (Wang et al. 2016). Predictions can even be
used to issue warnings prior to events like massive haul-
outs of walruses, providing the opportunity to prevent high
mortality of the species (Andersson et al. 2021). Interan-
nual variability makes sea ice forecasting a challenging task
(Gagné, Gillett, and Fyfe 2015; Andersson et al. 2021).
Gagné, Gillett, and Fyfe (2015) investigate the contrary re-
sulting trends of simulated and actually observed sea ice data
in the Antarctic by extending the historic records with recov-
ered satellite based estimates from 35 to 50 years. The ad-
ditional data further highlight the presence of high historic
variability in the phenomenon, but emphasizes the view that
existing climate simulations do not holistically describe the
behaviour of sea ice extent. An application at the opposite
end of the globe, the Beaufort Sea in the Arctic, uses convo-
lutional neural networks (CNNs) to estimate high-resolution
ice concentration maps directly from satellite synthetic aper-
ture radar (SAR) data (Wang et al. 2016). SAR remote sens-
ing is not impaired by cloud cover or the absence of day-
light and is therefore a robust input. Although the regional
scale of this application is constricted and sea ice concen-
tration is not predicted for the future, the resulting perfor-
mance, ranking close to the human expert benchmark, is
a promising outcome. Since then, various researchers have
applied deep learning models to predict sea ice concentra-
tions, however for short, sub-seasonal lead times: Chi and
Kim (2017) use deep learning and Kim et al. (2020) later
use Convolutional Neural Networks (CNNs), a variant of
deep learning, to predict Artic sea ice concentrations. Ali
et al. (2022) propose an attention-based Long Short Term

Memory (LSTM) ensemble method, combining the strength
of attention-based methods to learn distant connections and
the ability of LSTMs to remember previous states, analog
to previous weather conditions. Ali et al.’s model outper-
forms previous state-of-the-art models. However, these ap-
plications only evaluate 1-month ahead predictions.

In more recent work Andersson et al. (2021) present a
machine learning model to predict monthly averaged sea
ice probability classes across the entire Arctic region at
lead times of 1 to 6 months. They use a range of differ-
ent input data, including climate variables from the atmo-
sphere and ocean. The model is constructed as an ensem-
ble of U-Nets, a variant of CNNs. U-Nets were originally
developed for biomedical image segmentation, a conceptu-
ally similar Computer Vision task, mapping from gridded
inputs (e.g. images) to gridded outputs. Andersson et al.’s
IceNet model outperforms the state-of the art physics-based
model at longer prediction lead times. The deep learning en-
semble performs particularly well on predicting extreme sea
ice conditions. Andersson et al.’s work is exemplary in in-
tegrating domain knowledge and machine learning: It not
only displays a high level of understanding for the domain,
but it also extracts interpretable results from the model,
that may in turn provide new insights to domain experts and
their models. A variable importance analysis is used to un-
derstand what inputs are contributing most to yield the pre-
dictive results for different months and lead times. The find-
ings are compared to expectations from sea ice forecasting
experts, and are mostly found to match domain knowledge.
Nonetheless some new discoveries were also made from this
data-driven approach. One interesting result is that exten-
sively pre-training the model on CMIP6 climate simulation
data barely increased the predictive performance. This sup-
ports the recognition that relatively small amounts of obser-
vational data, rather than large amounts of simulated data,
can be highly indicative of future phenomena when used
within suitable modelling settings. Andersson et al. (2021)
suggest extending their work by using inputs at higher tem-
poral resolution, with the intention of improving predictive
ability at short, 1-month, lead times, where the model is
currently under-performing. Furthermore, the authors sug-
gest incorporating ice thickness as a model input to further
improve forecasts. While the classifier predicts a discrete
probability distribution over the possible sea ice probability
classes as an output, there are opportunities to expand on the
methodological approach by incorporating the probabilistic
framework.

Climate feedbacks and teleconnections
Teleconnections are persistent patterns of climate anomalies
that span large geographical areas. Such patterns and their
causal structures are hard to detect but they influence climate
processes at the global scale. The work by Kretschmer et al.
(2016) demonstrates an application of causal hypothesis
testing to understand Arctic teleconnection patterns: Causal
effect networks (CEN), a type of graphical model, are used
on time series data to identify autumn Barents and Kara sea
ice concentrations as an important driver for mid-latitude
winter circulation, which can show as extreme winter condi-



tions in North America and Euroasia. Artic teleconnections
are currently not very well understood, and as identified by
Rolnick et al. (2019) incorporating them into climate mod-
els is likely to improve climate projections at global and re-
gional resolutions. Work by van Nes et al. (2015) uses an-
other type of technique, convergent cross-mapping (CCM), a
non-linear state-space method, to investigate causal feed-
back structures in the field of paleoclimatology (van Nes
et al. 2015). They use more than 400,000 years of temper-
ature data and greenhouse gas concentrations reconstructed
from the Vostok Ice core from Antarctica as a proxy time
series. Their results demonstrate that orbital forcing (e.g.
insolation) have no significant causal association with ei-
ther temperature or greenhouse gas concentrations. How-
ever, they found a strong feedback effect of temperature vari-
ability on greenhouse gases, indicating that warming in it-
self may drive an increase in greenhouse gas concentrations.
This constitutes an important finding on the level of cause
and effect structures associated with climate change.

Discussion, Opportunities and next steps
In the following we discuss the applications reviewed in the
previous section, and we examine their methods, and distill
common challenges. Based on this we introduce and moti-
vate opportunities for probabilistic Machine Learning meth-
ods, in particular we introduce Bayesian Optimisation and
Causal methods and what use cases for future work they pro-
vide.

Discussion
Based on our review of recent works applying machine
learning to the Polar Climate and Earth Science domain (see
Table 1) we can observe that particular high-impact appli-
cations, i.e. sea ice forecasting and sea level rise predic-
tion, have received more attention than others. Deep learn-
ing methods are often used in conjunction with satellite data,
likely motivated by the success of deep learning for promi-
nent Computer Vision problems, as well as recent achieve-
ments in the cryosphere domain (Andersson et al. 2021;
Ali et al. 2022). Currently, distributed sub-communities con-
tribute to this new field and relevant work is published across
research venues in Earth & Climate, Machine Learning &
Statistics or interdisciplinary venues, where terminology,
contribution emphasis, and reproducibiity standards vary.

Challenges repeatedly discussed in the literature include:
• combining data from various sources (data fusion);
• dealing with varying spatial and temporal resolutions;
• increasing computational efficiency;
• interpretability of models and model outputs;
• modelling natural variability of phenomena;
• modelling systemic sources of uncertainty related to data

and models.
Andersson et al. (2021) showcase how variable importance
analysis can be used for deep learning models to make sense
of the mechanism behind the black-box-model to address in-
terpretability. However, this work incorporates probabilistic
representation only for predicted outputs. Zammit-Mangion

et al. (2014) is one of the few to have used Bayesian statistics
to model uncertainty throughout the hierarchical model; an
endeavour calling for a high degree of domain expertise to
inform prior distributions, parameterisation and model struc-
ture. As uncertainty is inseparable from Climate research,
there are major opportunities to use Probabilistic Machine
Learning methods to solve the challanges faced.

Opportunities for Probabilistic Machine Learning
Probabilistic Machine Learning describes those methods
that utilise a probabilistic framework to represent uncer-
tainty. The probabilistic modelling framework is rooted in
principled theoretical and highly practical approaches that
are concerned with “representing and manipulating uncer-
tainty” (Ghahramani 2015). Uncertainty arises from incor-
rect or biased measurements, from decisions about model
structure, from model parameters and from the stochastic
nature of the world. Therefore, uncertainty should be propa-
gated through the model and included in model predictions.
A review paper (Ghahramani 2015) provides an excellent
introduction to Bayesian inference, the core of Bayesian
statistics, and an overview of recent advances, specifically,
Bayesian Optimisation, probabilistic programming, prob-
abilistic data compression, and automatic model discovery.
Ghahramani highlights the importance of the probabilistic
modelling framework for problems where uncertainty is a
“key ingredient”. The paper also discusses a common com-
putational challenge among these probabilistic methods -
inference - and how approximate integration methods like
Markov Chain Monte Carlo (MCMC) (refer to Andrieu et al.
(2003); Brooks et al. (2011) for more detail) or Variational
Inference (refer to Blei, Kucukelbir, and McAuliffe (2017))
are related research fields addressing this challenge.

Various methods featured in Ghahramani (2015), includ-
ing the aforementioned Bayesian Optimisation and its most
common underlying surrogate model, Gaussian Processes,
originated from the spatial and spatio-temporal mod-
elling literature. Gaussian Process regression, which is also
known as Kriging in geostatistics, is a class of flexible
non-parametric models that has been particularly success-
ful in modelling spatial correlation structures (Marchant and
Ramos 2012). Gaussian Process models are discussed in
great detail in the textbook (Rasmussen and Williams 2006).
In the area of spatio-temporal modelling, the seminal text-
books by Cressie (2011, 1993) combine classical statisti-
cal methods and modern computational algorithms and are
therefore influential across theoretical and applied fields.
Other methods which have been gaining scholarly popu-
larity and are thus worth mentioning are Bayesian Neu-
ral Networks (Chandra, Azizi, and Cripps 2017), which
combine standard Neural Networks with Bayesian Infer-
ence, and Causal Inference (refer to Pearl (2009)), which
is concerned with ascertaining causal relationships using
probabilistic tools. As reviewed in the previous section,
Kretschmer et al. (2016) and van Nes et al. (2015) demon-
strate the use of causal methods in climate studies. Next, we
will discuss Bayesian Optimisation and Causal Inference, as
well as opportunities for applying these to polar climate re-
search, in more detail.



Bayesian Optimisation. Bayesian Optimisation is a tool
for global optimisation. It is particularly suitable when the
objective function is unknown and complex, and when eval-
uations of the objective function are noisy and costly to
obtain (Marchant and Ramos 2012; Archetti and Cande-
lieri 2019; Shahriari et al. 2016). Over iterations, each new
query point, where the objectively function is then evalu-
ated, will be chosen carefully and efficiently. While some
applications focus on finding the global optimum, other ap-
plication focus on the iterative determination of the next op-
timal query point, known as active learning (Shahriari et al.
2016). Well-known use cases for Bayesian Optimisation ex-
ist in the design of exploration strategies for mining and ge-
ology in environmental applications, where Bayesian Opti-
misation can inform the design of sensing networks (Shahri-
ari et al. 2016). Exploration drilling is a way of evaluating
the unknown objective function, which describes the dis-
tribution of sub-surface minerals across space. Exploration
drilling is very costly. Hence, data-efficient Bayesian Opti-
misation is well suited to inform decision making about the
selection of promising drilling sites. In environmental mon-
itoring Bayesian Optimisation is used to inform optimal se-
quential decisions which result in efficient data acquisition
of environmental variables of concern (Marchant, Ramos,
and Sanner 2014). Bayesian Optimisation takes into account
the expected value based on the global model (for the ‘opti-
misation’ in Bayesian Optimisation) and also the degree of
uncertainty the model has with regard to the expected value,
based on the data, the underlying model assumptions and
the prior. This is the trade-off between exploitation and ex-
ploration. To take into account the added desiderata of min-
imising sensor travel distance (Marchant and Ramos 2012)
propose a new acquisition function, the Distance Based Up-
per Confidence Bound. They demonstrate considerably re-
duced travel distance in a real world and a simulated exper-
iment without sacrificing accuracy. Use cases in polar re-
search have strong parallels to this work, with limited sens-
ing resources available, a vast space to explore, and high-
uncertainty models. Because Bayesian Optimisation simul-
taneously updates the probabilistic model of the unknown
function and sequentially suggests sampling locations (ac-
tive learning), the method has dual utility. Therefore, meth-
ods building on top of these ideas, for example reflecting
geographic or other asymmetric constraints in the acquisi-
tion strategy, may be a possible extension of previous work
with high practical relevance for Polar Climate research.

Recent work has applied Bayesian Optimisation to ac-
tively monitor urban air pollution in London using Hierar-
chical Bayesian modelling as the surrogate model (Hellan,
Lucas, and Goddard 2022). Further work is suggested to
explore the use of other kernel families and kernel varia-
tions that can capture correlations appearing at different time
scales. Another application of Bayesian Optimisation to the
environmental domain is the localisation of a contamination
source (Pirot et al. 2019). This work provides a good exam-
ple for integrating hydrology domain knowledge into the ob-
jective function. Within the Machine Learning community,
Bayesian Optimisation has attracted a lot of attention for
its use in optimising hyperparameters of Machine Learning

models (Snoek et al. 2014). Open-source software packages
like Dragonfly (Kandasamy et al. 2020) enable a ready-to-
use implementation of these ideas. Potentially this use case
can be transferred to the optimisation of climate models, or
to Machine Learning models of the Earth’s sub-systems.

Expanding on existing research, future work could ap-
ply Bayesian Optimisation to optimise sensor networks for
climate monitoring in polar regions, or as an active learn-
ing strategy to determine drilling locations for ice cores.
An extension to the work of Marchant and Ramos (2012)
could propose new acquisition functions that uses a non-
stationary cost function which reflects the physical charac-
teristics of the environment. Another challenging problem,
shared across the reviewed literature (Gopalan, Zammit-
Mangion, and McCormack 2021; Leong and Horgan 2020)
is data fusion. Combining data from different remote sens-
ing technologies as well as in situ measurements, demands
a principled way of fusing varying uncertainty distributions,
interpolating missing data or unifying scales. Whilst this is
a sub-problem of applied research generally, the Bayesian
framework may offer an elegant way to address this and
therefore could benefit other applications of Data Science to
climate-related domain problems in the Arctic and Antarc-
tic.

Causal Inference. Climate Modelling is predominately
associated with prediction through the implementation of
deterministic physical systems which are highly inter-
pretable. With the rise in machine learning methods, a size-
able component of the research community has focused
on developing predictive black-box models that can be
deployed as flexible and accurate regression (e.g. neural
networks, computer vision, recommender systems). These
methods, under the Rolnick et al. (2019) framework, are
attributed to informing adaptation strategies in response to
consequences of Climate Change. However, these methods
present serious limitations from a scientific perspective since
they: i) do not provide interpretability, thus limiting the ca-
pacity for climate scientists to learn from model predictions;
ii) show a lack of transparency into the underlying working
of the models, which may lead to a lack of trust; and iii)
capture correlations and not causation which may result in
misleading and incorrect recommendations.

In contrast, modelling the causal mechanisms of Cli-
mate Change, thereby discerning anthropogenic and natural
causes of warming, will provide insights that inform mit-
igation strategies with stronger and interpretable evidence.
Understanding the causes of phenomena we observe lies at
the very heart of scientific discovery (Runge et al. 2019).
Many domains, like medicine, use controlled experiments
to establish causal links. However, in a large and complex
field like Earth Science, where controlled experiments are
impossible or unethical, Causal Inference methods based on
observational data are a promising new research direction.
Runge et al. provide an overview of Causal Inference frame-
works for dealing with observational time series data and
they suggest suitable applications in the Earth System Sci-
ences. Computer simulation experiments, the prior standard
for causal discovery in the Earth Sciences, are computation-



ally expensive and constrained to assumptions made about
the systems. Concurrent with the rise in Machine Learn-
ing, data availability and increased computing power paved
the way for these new causal methods, which rely only on
observational data. Research in Bayesian Networks (Pearl
2009) dates back a few decades but forms the foundation for
many causal models. An important framework reviewed in
Runge et al. (2019) is Structural Causal Models (SCMs)
(refer to Peters, Janzing, and Schölkopf (2017) for more de-
tail). These are closely related to Bayesian Networks. Both
are graphical models, where the nodes of the graph repre-
sent variables of interest and the links between nodes repre-
sent causal relationships. SCMs are a particularly appealing
framework, because various strong assumptions (e.g. about
the noise structure) that were previously unavoidable, can
be relaxed. SCMs can be viewed as a complement to black
box ML models, to increase understanding of the mecha-
nisms of the system (Runge et al. 2019). This understanding
of causal relationships is not just a means to an end, but has
also been recognised to increase robustness, particularly for
out-of-distribution predictions (Runge et al. 2019).

In the context of probabilistic machine learning and un-
certainty quantification, the recent rise in fully probabilis-
tic Bayesian network inference has the power of incorporat-
ing uncertainty about causal structures by providing poste-
rior distributions over graph structures (Kuipers and Moffa
2017). Furthermore, if causal inference and causal effects
are also treated in a fully probabilistic framework, they have
the capacity to quantify uncertainty and guide sequential de-
cision making. Causal inference can also be connected with
Bayesian Optimisation (Aglietti et al. 2020), which can be
generalised to active sampling and intervention strategies
that acquire data in order to find the most valuable actions.

Novel developments in Causal Inference frameworks in-
cluding Bayesian Networks and Structural Causal Mod-
els enable us to gain understanding of causal structures of
underlying systems from observational data. These offer
great opportunities for future work, for instance, to build
more robust climate models, to further understand causal
feedbacks in climate change as demonstrated by van Nes
et al. (2015), or to distinguish anthropogenic from natural
drivers of Climate Change.

Conclusion
Opportunities for applying Machine Learning to solve prob-
lems from the Climate Sciences and the Polar Climate Sci-
ences more specifically, are widely recognised and have
the potential to be highly impactful (Rolnick et al. 2019).
However, because this interdisciplinary research area is still
novel, and remote sensing data has only become more ac-
cessible and more meaningful with increased sensing cov-
erage and accompanying computing power in recent years,
there are more research opportunities than existing work. A
large body of work exists on the use of deep learning for
remote sensing application (Ma et al. 2019) as well as the
Earth Sciences (Reichstein et al. 2019). Aligned with this,
many reviewed applications of machine learning to polar cli-
mate research use deep learning in combination with satel-
lite data. Some of these applications outperform state-of-

the art physics-based models (Andersson et al. 2021), sug-
gesting further promising advances in this direction of re-
search in the future. Common challenges across reviewed
literature include the need for data fusion, assimilating
multi-resolution data, increasing computational efficiency,
enhancing interpretability, and modelling uncertainty. Ad-
dressing these challenges is another opportunity for future
work and will benefit research down-stream.

Although probabilistic modelling is inevitable for making
sensible and informed decisions, methods applied to prob-
lems in this fields often lack a framework for uncertainty
quantification. To address this need, the class of probabilis-
tic Machine Learning offers a toolbox of methods which
are well-suited to reflect real-life uncertainty. We particu-
larly highlight Bayesian Optimisation and Causal Inference
methods which are well suited to problems from the Polar
Climate and Earth Science domain. Bayesian Optimisation
may be used to inform drilling site selection of ice cores, se-
quential selection of monitoring locations for autonomous
sensors, or to optimise stationary sensor networks across
the polar regions. Other non-spatial applications include the
global optimisation of hyperparameters for machine learn-
ing and traditional climate models. Improved experimental
design may help in reducing the computational footprint of
this computationally intensive field of research. Advances
in Causal Inference techniques provide another great op-
portunity for future work: Quantifying causal drivers of cli-
mate change or building more robust prediction models, by
resembling the underlying causal structures of the system,
could strengthen the uncertainty-aware, scientific founda-
tion for global decision making in stewarding human im-
pact on climate, thereby supporting climate change mitiga-
tion and adaption efforts.
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2020. Tuning hyperparameters without grad students: scal-
able and robust Bayesian optimisation with dragonfly. The
Journal of Machine Learning Research, 21(1): 81:3098–
81:3124.
Kim, Y. J.; Kim, H.-C.; Han, D.; Lee, S.; and Im, J. 2020.
Prediction of monthly Arctic sea ice concentrations using
satellite and reanalysis data based on convolutional neural
networks. The Cryosphere, 14(3): 1083–1104. Publisher:
Copernicus GmbH.
Kopp, R. E.; DeConto, R. M.; Bader, D. A.; Hay, C. C.;
Horton, R. M.; Kulp, S.; Oppenheimer, M.; Pollard, D.; and
Strauss, B. H. 2017. Evolving Understanding of Antarctic
Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level
Projections. Earth’s Future, 5(12): 1217–1233.
Kretschmer, M.; Coumou, D.; Donges, J. F.; and Runge, J.
2016. Using Causal Effect Networks to Analyze Different
Arctic Drivers of Midlatitude Winter Circulation. Journal of
Climate, 29(11): 4069–4081. Publisher: American Meteo-
rological Society Section: Journal of Climate.



Kuipers, J.; and Moffa, G. 2017. Partition MCMC
for Inference on Acyclic Digraphs. Journal of
the American Statistical Association, 112(517):
282–299. Publisher: Taylor & Francis eprint:
https://doi.org/10.1080/01621459.2015.1133426.
Leong, W.; and Horgan, H. 2020. DeepBedMap: A deep
neural network for resolving the bed topography of Antarc-
tica. Cryosphere, 14(11): 3687–3705.
Lythe, M. B.; and Vaughan, D. G. 2001. BEDMAP: A
new ice thickness and subglacial topographic model of
Antarctica. Journal of Geophysical Research: Solid Earth,
106(B6): 11335–11351.
Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; and Johnson,
B. A. 2019. Deep learning in remote sensing applications:
A meta-analysis and review. ISPRS Journal of Photogram-
metry and Remote Sensing, 152: 166–177.
Marchant, R.; and Ramos, F. 2012. Bayesian optimisa-
tion for Intelligent Environmental Monitoring. In 2012
IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2242–2249. ISSN: 2153-0866.
Marchant, R.; Ramos, F.; and Sanner, S. 2014. Sequen-
tial Bayesian optimisation for spatial-temporal monitoring.
In Proceedings of the Thirtieth Conference on Uncertainty
in Artificial Intelligence, UAI’14, 553–562. Arlington, Vir-
ginia, USA: AUAI Press. ISBN 978-0-9749039-1-0.
Monteleoni, C.; Schmidt, G. A.; and McQuade, S. 2013. Cli-
mate Informatics: Accelerating Discovering in Climate Sci-
ence with Machine Learning. Computing in Science & En-
gineering, 15(5): 32–40.
NASA. 2021. Landsat 1 | Landsat Science.
Https://landsat.gsfc.nasa.gov/satellites/landsat-1/. Ac-
cessed: 2022-07-20.
Naughtin, C.; Hajkowicz, S.; Schleiger, E.; Bratanova, A.;
Cameron, A.; Zamin, T.; and Dutta, A. 2022. Our Future
World: Global megatrends impacting the way we live over
coming decades. Technical report, CSIRO, Brisbane, Aus-
tralia. Publisher: CSIRO.
NOAA. 2022. Explore Sea Level Rise
Tools, Services, and Educational Material.
Https://oceanservice.noaa.gov/hazards/sealevelrise/. Ac-
cessed: 2022-07-20.
Notz, D.; and Community, S. 2020. Arctic Sea Ice
in CMIP6. Geophysical Research Letters, 47(10):
e2019GL086749.
Pearl, J. 2009. Causality: models, reasoning, and inference.
Cambridge ;: Cambridge University Press, 2nd ed. edition.
ISBN 978-0-521-89560-6.
Peters, J.; Janzing, D.; and Schölkopf, B. 2017. Elements
of Causal Inference: Foundations and Learning Algorithms.
Adaptive Computation and Machine Learning series. Cam-
bridge, MA, USA: MIT Press. ISBN 978-0-262-03731-0.
Pirot, G.; Krityakierne, T.; Ginsbourger, D.; and Renard, P.
2019. Contaminant source localization via Bayesian global
optimization. Hydrology and Earth System Sciences, 23(1):
351–369. Publisher: Copernicus GmbH.

Rasmussen, C. E.; and Williams, C. K. I. 2006. Gaussian
processes for machine learning. Adaptive computation and
machine learning. Cambridge, Mass: MIT Press. ISBN 978-
0-262-18253-9.

Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.;
Denzler, J.; Carvalhais, N.; and Prabhat. 2019. Deep learn-
ing and process understanding for data-driven Earth system
science. Nature, 566(7743): 195–204.

Rolnick, D.; Donti, P. L.; Kaack, L. H.; Kochanski, K.; La-
coste, A.; Sankaran, K.; Ross, A. S.; Milojevic-Dupont, N.;
Jaques, N.; Waldman-Brown, A.; Luccioni, A.; Maharaj, T.;
Sherwin, E. D.; Mukkavilli, S. K.; Kording, K. P.; Gomes,
C.; Ng, A. Y.; Hassabis, D.; Platt, J. C.; Creutzig, F.; Chayes,
J.; and Bengio, Y. 2019. Tackling Climate Change with
Machine Learning. arXiv:1906.05433 [cs, stat]. ArXiv:
1906.05433.

Runge, J.; Bathiany, S.; Bollt, E.; Camps-Valls, G.; Coumou,
D.; Deyle, E.; Glymour, C.; Kretschmer, M.; Mahecha,
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