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Abstract

Greenhouse gasses (GHG) emitted from fossil-fuel-burning
power plants pose a global threat to climate and public
health. GHG emissions degrade air quality and increase the
frequency of natural disasters five-fold, causing 8.7 million
deaths per year. Quantifying GHG emissions is crucial for
the success of the planet. However, current methods to track
emissions cost upwards of $520,000/plant. These methods are
cost prohibitive for developing countries, and are not globally
standardized, leading to inaccurate emissions reports from
nations and companies. I developed a low-cost solution via an
end-to-end deep learning pipeline that utilizes observations of
emitted smoke plumes in satellite imagery to provide an accu-
rate, precise system for quantifying power plant GHG emis-
sions by segmentation of power plant smoke plumes, classi-
fication of the plant fossil fuels, and algorithmic prediction
of power generation and CO2 emissions. The pipeline was
able to achieve a segmentation Intersection Over Union (IoU)
score of 0.841, fuel classification accuracy of 92%, and quan-
tify power generation and CO2 emission rates with R2 val-
ues of 0.852 and 0.824 respectively. The results of this work
serve as a step toward the low-cost monitoring and detection
of major sources of GHG emissions, helping limit their catas-
trophic impacts on climate and our planet.

Introduction
Fossil-fuel power plants are one of the largest emitters of
Greenhouse gasses, accounting for 73% of the U.S.’ GHG
emissions and 65% of global GHG emissions (on Cli-
mate Change and Edenhofer 2014). The pollutants produced
by these emissions serve as major contributors to the climate
crisis and have had devastating impacts on air quality and
the environment. GHG emissions cause 8.7 million deaths
per year and have increased the frequency of natural disas-
ters such as wildfires and powerful storms five fold (Smol
2012). These public health and environmental impacts cost
billions in annual damages.

Preventing the permanent effects of climate change and
air pollution requires identifying the sources and distribu-
tions of GHG emissions on a precise scale. However, keep-
ing track of GHG emissions from all global power plants is
difficult, as the quality of emissions data varies depending on
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each country’s reporting protocols, maturity of their infras-
tructure, and availability of proper monitoring systems. For
example, in a developed country such as the United States,
every major power plant has on-site Continuous Emissions
Monitoring Systems (CEMS) that reports data to the Envi-
ronmental Protection Agency. But these systems are very ex-
pensive, costing over $500,000 for installation and $20,000
annually for maintenance (US EPA 2016), making them im-
practical for use in many lesser-developed countries. Ad-
ditionally, the lack of reliable infrastructure causes many
countries to provide vague, inaccurate, and outdated esti-
mations of their GHG emissions. An examination of GHG
emission reports from 196 countries found gaps in nation’s
declared emissions versus estimates by the United Nations
totalling to 10.6 billion tons of globally under-reported emis-
sions per year (Mooney et al.).

These issues require new, low-cost alternatives to estimate
and report GHG emissions on a more precise scale. In recent
years, the use of satellite data has emerged as a potential
candidate to monitor the progression of climate change and
global warming (Boesch et al. 2021). Equipped with an array
of sensors and instruments to measure various atmospheric
conditions, spectrometer satellites have helped inform our
understanding of the dynamics of changes in Earth’s tem-
perature. Launched in 2009 and 2014, spectrometer satellite
missions Greenhouse Gasses Observing Satellite (GOSAT)
and Orbiting Carbon Observatory (OCO-2) have provided
carbon dioxide (CO2) emission data on a global and national
level (Eldering et al. 2017). However, spectrometer satellite
instruments are imprecise and low-resolution (≥ 10 km res-
olution), and cannot identify the granular emissions (≤ 2km)
of individual power plants (Apte et al. 2017).

When active, fossil-fuel burning power plants emit a
smoke plume as a byproduct of the electricity generation
process. These plumes can be captured by optical satellite
imagery and fed into a deep learning model to produce accu-
rate estimates of the plant’s GHG emissions (Cusworth et al.
2021). Pairing deep learning with high-resolution optical
satellite imagery serves as a promising method to estimate
power plant GHG emissions with accuracy rates near spec-
trometer measurements, while simultaneously maintaining
the ability to monitor emissions on a global scale. More-
over, this method does not require huge investments or elab-
orate infrastructure, serving as a low-cost alternative to fill-



ing long existing gaps in emissions data around the world.
In this work, I present an end-to-end deep learning pipeline
to estimate CO2 emissions, the most dominant greenhouse
gas in the atmosphere, at an individual power-plant scale.
My pipeline processes a single multi-spectral satellite image
and associated weather data to extract smoke plumes from
power plants and estimate power generation and CO2 emis-
sion rates. The results of this work serve as a step towards the
detection and monitoring of major sources of power plant
GHG emissions on a global scale at a low-cost.

Previous Works
Previous works have explored the relations between plume
imagery and GHG emission rates, and the applications of
machine learning in predicting power plant behavior. Cus-
worth et al. (Cusworth et al. 2021) employed airborne vis-
ible/infrared imaging spectrometers (AVIRIS-NG) to quan-
tify the carbon dioxide (CO2) and methane (CH4) emissions
of 17 power plants from their smoke and vapor plumes.
Aided by plant-specific annotations, Climate TRACE, a
coalition working towards tracking all greenhouse gas emis-
sions from anthropogenic activities, has been able to es-
timate plant generation and emission rates from satellite
imagery. Couture et al. (Couture et al. 2020) details Cli-
mate TRACE’s methods in annotating cooling towers, flue
stacks, and water outlets to aid in their model’s predic-
tions. Both Cusworth and Climate TRACE’s respective ap-
proaches are reliant on extensive data preparation and an-
notation, thus making it difficult to produce a generaliz-
able solution that can scale across large regions. More re-
cently, Hannna et al. (Hanna et al. 2021) demonstrated the
promise of using plume segmentation to inform more gen-
eralizable model predictions, feeding a satellite image as an
input to a pipeline capable of plume segmentation, power
plant classification, and power generation prediction. This
work builds off Hannna’s research by adding CO2 flux rates
to the dataset, and comparing various state-of-the-art ma-
chine learning architectures to produce a pipeline that per-
forms well across the plume segmentation, fossil fuel clas-
sification, power generation regression, and CO2 regression
tasks.

Methods
Dataset
The dataset from Hanna et al. is comprised of 2131 samples
of multi-spectral satellite images taken by ESA’s Sentinel-
2 satellites (Drusch et al. 2012). The resolution of the im-
agery is 120px × 120px at 10m/px to cover an area of 1.2km
× 1.2km on the ground. Each image has a corresponding
smoke plume mask that is used to train the segmentation
models. These samples are paired with the plant’s longi-
tude and latitude coordinates, country, weather data (tem-
perature, humidity, wind), type of fossil fuel, and power
generation rates. Using reported annual CO2 emissions and
power plant generation capacities sourced from the Euro-
pean Union Emissions Trading System (Verena Graichen
2019), I convert the provided power generation rates into
CO2 emission, or flux, rates. The CO2 flux rate of the plants

ranges from 307 tons/hour to 2834 tons/hour, with the aver-
age flux rate being 1548 tons/hour.

Data Preprocessing
The data was split with 70% (1507 samples) going into the
training set and 30% (624 samples) going in the testing sets
such that each set did not contain images of the same power
plant. All images in the dataset were normalized to reduce
the effect of background objects or noise in the image. Then,
all the images from the training set were duplicated five fold
to increase the size of the training data to 7535 samples,
and they all underwent a data augmentation process where
they were randomly mirrored, flipped, cropped, and rotated
a random amount between 0◦ and 360◦ both clockwise and
counter-clockwise. This augmentation serves to generate a
diverse set of possible plume orientations and center loca-
tions that should help the model better generalize and pre-
vent over fitting to the training set.

Figure 1: Diagram of the model pipeline. It takes a multi-
spectral satellite image as input and learns to do four tasks:
(1) semantic segmentation of smoke plumes, (2) classifica-
tion of type of fossil fuel, and (3) regression with respect to
power generation and (4) CO2 emission rates.

Model Pipeline
The pipeline needs to accomplish four tasks: (1) semantic
segmentation of smoke plumes in the satellite imagery, (2)
classification of the type of fossil fuels being used by the
power plant, (3) prediction of the plant’s power generation
rate, and (4) prediction of the CO2 flux rate. Figure 1 shows
the structure and flow of the model pipeline, and how the
models for tasks 2-4 use outputs of other models to help
inform their predictions. This is most significantly utilized
for task 4, the prediction of the CO2 flux rate, which uses the
output of all three previous tasks as input to the model. For



each task, I evaluated 3 state-of-the-art model architectures
that have shown to generally perform well in their respective
tasks.

Segmentation
For the segmentation task, I chose FCN (Fully Convolu-
tional Network), U-Net, and DeepLabV3 for experimenta-
tion (Long, Shelhamer, and Darrell 2014), (Ronneberger,
Fischer, and Brox 2015), (Chen et al. 2017). The FCN model
consists of a set of max-pooling and convolution layers to
identify and segment features in an image. The U-Net is
based on FCN, but it employs an Encoder-Decoder architec-
ture consisting of contracting and expanding convolutional
layers. DeepLabv3 is a pre-trained model that also employs
an encoder-decoder architecture with spatial pyramind pool-
ing layers and atrous convolution techniques to learn about
the larger context of the image it is segmenting. I mea-
sure performance on this task using Intersection Over Union
(IoU) and the loss function is binary cross entropy.

Classification
For classification, I employed transfer learning, and tested
pre-trained models Res-Net 50, VGG-16, and InceptionV3,
which were all created with different metrics to optimize
(He et al. 2016), (Simonyan and Zisserman 2015), (Szegedy
et al. 2016). ResNet prioritizes finding the simplest solu-
tion through shortcut connections. VGG-16 is an optimized
convolutional neural network model (CNN) with a focus on
faster learning without over-fitting. InceptionV3 uses multi-
ple kernal sizes to adapt to finding both larger, global fea-
tures and smaller, area-specific features in an image, which
is necessary for this task, as plumes can span across the en-
tire satellite image or be a single spot in its corner. The cho-
sen loss function is cross entropy loss, and the evaluation
metric for this task is accuracy and Area Under the Curve
(AUC).

Regression
Tasks 3 and 4 are regression problems, in which I evalu-
ated Linear Regression, Artificial Neural Networks (ANN),
and XGBoost (eXtreme Gradient Boost) (Chen and Guestrin
2016). Linear Regression models the relationship between a
set of variables through a linear equation. ANNs employ the
neural network architecture and have done well in regression
tasks. XGBoost is an implementation of the gradient boosted
trees algorithm that learns to fit data by minimizing a regu-
larized (L1 and L2) objective function. L1 loss was selected
as the loss function and performance was measured through
the R2 coefficient, Mean Absolute Error (MAE) and Mean
Absolute Percentage Error (MAPE).

Results
To train each model, I performed a hyperparameter search
using the library Optuna, a framework that automates the
training process by automatically adjusting the hyperparam-
eters to maximize each of the listed performance metrics
above (Akiba et al. 2019). The results from the training and
test sets of all the models discussed is shown in Table 1.

Table 1: Model Training Results

Model Task Metric Train Test

FCN Seg. IoU .752 .684
DeepLabv3+ Seg. IoU .836 .769

U-Net Seg. IoU .903 .841
VGG-16 Cls. Acc. 76% 69%

Inceptionv3 Cls. Acc. 86% 81%
ResNet50 Cls. Acc. 94% 92%
Lin Reg Pwr Reg. R2 .803 .651

ANN Pwr Reg. R2 .837 .809
XGBoost Pwr Reg. R2 .893 .852
Lin Reg Flux Reg. R2 .723 .542

ANN Flux Reg. R2 .815 .748
XGBoost Flux Reg. R2 .861 .824

Plume Segmentation
The best performing segmentation model was the U-Net,
achieving an IoU score of 0.903 on the training set and 0.841
on the test set. The model performed very well on sam-
ples where the plume masked the majority of the image, and
performance declined on images with smaller plumes with
more complicated shapes. I found that the model heavily uti-
lized both associated weather data and certain multi-spectral
imagery bands as key features that influenced its predictions.
Particularly, the model used outside factors such as humid-
ity and wind speeds to help it gain a larger context of the
plume, and how it could have possibly been influenced by
conditions that could not be captured by the satellite im-
agery. Moreover, the Short-wave Infrared (SWIR) and Wa-
ter Vapor imagery bands were able to capture thermal and
visual details about the smoke plume that helped the model
differentiate the plume from other background noise in the
image, such as clouds, light buildings, or other terrain.

Figure 2: Confusion Matrix of ResNet-50 Model for Fossil-
Fuel Classification Task.



Fossil Fuel Classification
For fossil-fuel classification, the ResNet50 model reached
an accuracy rate of 94% on the training and 92% on the test
set, much higher than InceptionV3 and VGG-16. This model
was able to generalize very well across the four classes, coal,
peat, gas, and lignite, and the test set results are displayed
in the Confusion Matrix (Figure 2). One possible source of
bias in this model comes from the unequal distributions of
classes in the dataset, where coal is present more than twice
as much as peat.

Power Plant Regression
The XGBoost model outperformed Linear Regression and
ANN, gaining a R2, MAPE of .861, 8.7% and .824, 10.2%
on the training and test sets respectively. The output of the
second model, the fossil-fuel classification prediction, had
the most influence over these power generation predictions,
as the per-hour CO2 emissions from coal power plants are
much larger than the emissions from peat or natural gas
power plants (Raghuvanshi, Chandra, and Raghav 2006).
Initially, the model was largely over-fitting to the training
set, and this was reduced through increased data augmenta-
tion and the addition of several dropout layers, which both
served as regularization techniques increasing the model’s
variances to the training data. This enabled a better general
fit and increased performance on the test set, where it was
giving predictions on plants it had never seen before.

CO2 Flux Rate Regression
XGBoost was also the best performing model for CO2 flux
rate regression, achieving an R2 value of .824 and a MAPE
of 10.8% on the test set. Figure 3 exhibits this high perfor-
mance, where the .87 line slope indicates a high correlation
between the model’s predictions and the ground truth data.
Model performance on the CO2 emission rate predictions
was heavily dependent on the accuracy of the power genera-
tion predictions, as seen from the direct relationship between
power generation and CO2 flux rate mentioned above. The
XGBoost model was able to generalize very well to the data,
and it is a promising algorithm to further evaluate to see if it
can continue to perform well across other regions.

Conclusions and Future Work
In this work, I developed an end-to-end deep learning
pipeline that successfully predicted power generation and
CO2 emission rates across Europe via high resolution re-
mote sensing data, an important step toward a future of ac-
curate emissions monitoring across the globe. My pipeline
performed well across all of its tasks (plume segmentation,
fossil-fuel classification, power generation regression, and
CO2 flux rate regression) and demonstrates the promise of
the plume segmentation approach acting as a possible gen-
eralizable solution to measure emissions across many power
plants.

This project identified a number of features, techniques,
and models that hold promise for evaluation in future works.
The use of Shortwave Infrared (SWIR) imagery for differen-
tiating plumes and other pollutants from background noise

Figure 3: XGBoost Model Predicted CO2 Emissions v.s.
Ground Truth CO2 Emissions (Flux Rate).

can serve as a key component for creating adaptive models
to generalize to regional patterns and operate at night. The
application of XGBoost in regression tasks can be further
evaluated to see if the model can maintain its high accuracy
rates across a larger sample size of data. Data accessibil-
ity remains a key component to the expansion of this work.
Currently, the model has only trained on European power
plants, and additional testing is required to measure model
bias and see if this performance can translate to other re-
gions and countries, such as the United States and China, in
order for it to be truly globally scalable. In the near future, I
aim to make this work more accurate and precise, with a fo-
cus on expanding to lesser-developed regions such as India
and Brazil. Moreover, as more data becomes available, the
pipeline can extended to predict other gases, such as such as
methane (CH4) and nitrous oxide (N2O).

Global emissions monitoring systems will radicalize cli-
mate action efforts, providing a new level of reliable and
transparent data that can aid governments and companies in
designing effective climate policy. For example, by helping
to identify “super-emitter” power plants, this pipeline pin-
points locations where government regulation is necessary
and renewable alternatives will have the most impact. The
results of this work serve as a step toward the low-cost mon-
itoring and detection of major sources of GHG emissions,
helping limit their catastrophic impacts on climate and our
planet.
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